Applications of Airborne Laser Scanning in Forest Fuel Assessment and Fire Prevention

Forest fire management requires accurate, spatially explicit and up-to date information on forest fuels and their vertical structure. Airborne laser scanning (ALS) provides 3-D vegetation models to map accurate fuel properties critical for modelling fire behaviour. Laser point cloud data stratified into height intervals coupled with spectral information can provide accurate fuel type maps, especially if non-parametric classifiers are used. Canopy bulk density (CBD) depends on ALS metrics related to canopy volume and biomass to yield regression models ranging between 0.77 and 0.94 in R2. ALS estimates canopy base height (CBH) after the identification of the gap in the canopy that describes the beginning of the tree crown. Due to laser point density among other factors, CBH for individual trees is usually less accurate than for plots. Penetration through the upper canopy and the low height of the surface fuels combined with a low laser pulse density constrain the estimation of surface canopy height (SCH). ALS together with optical sensors map the above mentioned fuels properties more accurately than with any of these sensors alone due to the synergy of the structural and spectral information collected by each sensor. Despite the fact that most attempts at using ALS for fire management have been focused on characterization of fuels at the pre-fire stage or during the fire, multi-temporal ALS data also have high potential at the post-fire stage to estimate burn severity and vegetation regeneration after fire.

[1]  E. Chuvieco Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data , 2003 .

[2]  Benjamin Koetz,et al.  Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data , 2008 .

[3]  J. W. Wagtendonk,et al.  Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity , 2004 .

[4]  Emilio Chuvieco,et al.  Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains , 2002 .

[5]  F. Albini Estimating Wildfire Behavior and Effects , 1976 .

[6]  John F. Weishampel,et al.  Using Lidar-Derived Vegetation Profiles to Predict Time since Fire in an Oak Scrub Landscape in East-Central Florida , 2010, Remote. Sens..

[7]  I. Burke,et al.  Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests , 2005 .

[8]  S. Ustin,et al.  Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling , 2003 .

[9]  Jessica J. Mitchell,et al.  Errors in LiDAR-derived shrub height and crown area on sloped terrain , 2011 .

[10]  Yong Pang,et al.  Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .

[11]  Nicholas Skowronski,et al.  Three-dimensional canopy fuel loading predicted using upward and downward sensing LiDAR systems , 2011 .

[12]  D. Riaño,et al.  Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems , 2002 .

[13]  H. Anderson Aids to Determining Fuel Models for Estimating Fire Behavior , 1982 .

[14]  Tian Han,et al.  Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data , 2009 .

[15]  R. Dubayah,et al.  Use of LIDAR for Forest Inventory and Forest Management Application , 2007 .

[16]  Emilio Chuvieco,et al.  GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data , 2009 .

[17]  C. E. Van Wagner,et al.  Prediction of crown fire behavior in two stands of jack pine , 1993 .

[18]  H. Maas,et al.  Tree Topology Representation from TLS Point Clouds Using Depth-First Search in Voxel Space , 2012 .

[19]  David Riaño,et al.  Terrestrial laser scanning to estimate plot-level forest canopy fuel properties , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[20]  Wolfgang Wagner,et al.  Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts , 2010 .

[21]  Jacob T. Mundt,et al.  Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications , 2006 .

[22]  E. Chuvieco,et al.  Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models , 2007 .

[23]  Mary C. Henry,et al.  Monitoring post-burn recovery of chaparral vegetation in southern California using multi-temporal satellite data , 1998 .

[24]  S. Frolking,et al.  Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure , 2009 .

[25]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[26]  José Antonio Manzanera,et al.  Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas , 2011 .

[27]  Joe H. Scott,et al.  Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior , 2003 .

[28]  R. Landry,et al.  Remote sensing of burn severity: experience from western Canada boreal fires* , 2008 .

[29]  Jay D. Miller,et al.  Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data , 2002 .

[30]  S. Veraverbeke,et al.  Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring - A Review , 2012 .

[31]  Scott J. Goetz,et al.  Synergistic use of spaceborne lidar and optical imagery for assessing forest disturbance: An Alaska case study , 2010 .

[32]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[33]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[34]  S. Ustin,et al.  Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .

[35]  Emilio Chuvieco,et al.  Characterization of canopy fuels using ICESat/GLAS data , 2012 .

[36]  E. Chuvieco,et al.  Aplicación de imágenes Landsat-TM a la cartografía de modelos combustibles , 1995 .

[37]  Carl Seielstad,et al.  Deriving Fuel Mass by Size Class in Douglas-fir (Pseudotsuga menziesii) Using Terrestrial Laser Scanning , 2011, Remote. Sens..

[38]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[39]  K. Lim,et al.  Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators , 2004 .

[40]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[41]  R. Burgan,et al.  BEHAVE : Fire Behavior Prediction and Fuel Modeling System -- FUEL Subsystem , 1984 .

[42]  Nikos Koutsias,et al.  Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS , 2003 .

[43]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[44]  Mark W. Patterson,et al.  Mapping Fire-Induced Vegetation Mortality Using Landsat Thematic Mapper Data: A Comparison of Linear Transformation Techniques , 1998 .

[45]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[46]  Robert E. Keane,et al.  Estimating forest canopy bulk density using six indirect methods , 2005 .

[47]  Woodam Chung,et al.  Modeling tree-level fuel connectivity to evaluate the effectiveness of thinning treatments for reducing crown fire potential , 2012 .

[48]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[49]  Luis Ángel Ruiz Fernández,et al.  Study of Shrub Cover and Height Using LIDAR Data in a Mediterranean Area , 2011, Forest Science.

[50]  Dirk Pflugmacher,et al.  Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data , 2009 .

[51]  Peter Axelsson,et al.  Processing of laser scanner data-algorithms and applications , 1999 .

[52]  Laura Chasmer,et al.  Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns , 2006 .

[53]  Robert E. Keane,et al.  Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements , 2006 .

[54]  D. Verbyla,et al.  Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM , 2005 .

[55]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[56]  Sean P. Healey,et al.  Using object‐oriented classification and high‐resolution imagery to map fuel types in a Mediterranean region , 2006 .

[57]  Emilio Chuvieco,et al.  Fuel loads and fuel types , 2003 .

[58]  Menas Kafatos,et al.  Evaluation for damaged degree of vegetation by forest fire using lidar and a digital aerial photograph. , 2010 .

[59]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[60]  Amy L. Neuenschwander,et al.  Predicting southeastern forest canopy heights and fire fuel models using GLAS data , 2010 .

[61]  N. Glenn,et al.  LiDAR measurement of sagebrush steppe vegetation heights , 2006 .

[62]  S. Popescu,et al.  Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps , 2008 .

[63]  N. Benson,et al.  Landscape Assessment: Ground measure of severity, the Composite Burn Index; and Remote sensing of severity, the Normalized Burn Ratio , 2006 .

[64]  ESTIMATING SEMIARID VEGETATION HEIGHT FROM GLAS DATA , 2011 .

[65]  John Sessions,et al.  Applying LiDAR technology for tree measurements in burned landscapes , 2010 .

[66]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[67]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[68]  J. Pausas,et al.  2 The role of fire in European Mediterranean Ecosystems , 1999 .

[69]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[70]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[71]  Scott L. Stephens,et al.  Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Fuel Hazards , 2007 .

[72]  S. Ustin,et al.  Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging , 2007 .

[73]  Birgit Peterson Canopy Fuels Inventory and Mapping Using Large-Footprint Lidar , 2005 .

[74]  Nancy F. Glenn,et al.  Estimation of fire severity using pre- and post-fire LiDAR data in sagebrush steppe rangelands , 2009 .

[75]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[76]  Temuulen Tsagaan Sankey,et al.  LiDAR-Based Classification of Sagebrush Community Types , 2011 .

[77]  Patricia L. Andrews,et al.  Introduction To Wildland Fire , 1984 .

[78]  Dominique Guyon,et al.  Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar , 2010, Sensors.

[79]  Emilio Chuvieco,et al.  Estimation of Fuel Conditions for Fire Danger Assessment , 2009 .

[80]  Carl Seielstad,et al.  Using airborne laser altimetry to determine fuel models for estimating fire behavior , 2003 .

[81]  Javier Estornell,et al.  Estimation of shrub biomass by airborne LiDAR data in small forest stands , 2011 .

[82]  Emilio Chuvieco,et al.  Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models , 2009 .

[83]  Gregory P Asner,et al.  Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park. , 2008, Ecological applications : a publication of the Ecological Society of America.

[84]  N. Glenn,et al.  Characterizing Western Juniper Expansion via a Fusion of Landsat 5 Thematic Mapper and Lidar Data , 2010 .

[85]  S. A. Lewis,et al.  Remote sensing techniques to assess active fire characteristics and post-fire effects , 2006 .