THE OPTICAL, ULTRAVIOLET, AND X-RAY STRUCTURE OF THE QUASAR HE 0435−1223

Microlensing has proved an effective probe of the structure of the innermost regions of quasars and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435–1223 in the R band and in the ultraviolet (UV), and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constrain the size of the accretion disk in the rest-frame near- and far-UV, and constrain for the first time the size of the X-ray emission regions in two X-ray energy bands. The R-band scale size of the accretion disk is about 1015.23 cm (~23rg ), slightly smaller than previous estimates, but larger than would be predicted from the quasar flux. In the UV, the source size is weakly constrained, with a strong prior dependence. The UV to R-band size ratio is consistent with the thin disk model prediction, with large error bars. In soft and hard X-rays, the source size is smaller than ~1014.8 cm (~10rg ) at 95% confidence. We do not find evidence of structure in the X-ray emission region, as the most likely value for the ratio of the hard X-ray size to the soft X-ray size is unity. Finally, we find that the most likely value for the mean mass of stars in the lens galaxy is ~0.3 M ☉, consistent with other studies.

[1]  P. Schechter,et al.  SIZES AND TEMPERATURE PROFILES OF QUASAR ACCRETION DISKS FROM CHROMATIC MICROLENSING , 2010, 1007.1665.

[2]  E. Baron,et al.  EFFECTS OF KERR STRONG GRAVITY ON QUASAR X-RAY MICROLENSING , 2012, 1211.6487.

[3]  E. Turner,et al.  Limits on the microlens mass function of Q2237+0305 , 1999, astro-ph/9904359.

[4]  P. Schechter,et al.  Size Is Everything: Universal Features of Quasar Microlensing with Extended Sources , 2004, astro-ph/0408195.

[5]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[6]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[7]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[8]  E. Ofek,et al.  Spectroscopic Confirmation of the Fifth Image of SDSS J1004+4112 and Implications for the M_BH-sigma_* Relation at z=0.68 , 2008, 0808.1769.

[9]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[10]  T. O. S. University,et al.  X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080 , 2008, 0802.1210.

[11]  C. Kochanek,et al.  THE TRANSVERSE PECULIAR VELOCITY OF THE Q2237+0305 LENS GALAXY AND THE MEAN MASS OF ITS STARS , 2009, 0910.3213.

[12]  Submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 14/09/00 LENSING AND THE CENTERS OF DISTANT EARLY-TYPE GALAXIES , 2002 .

[13]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[14]  Ipac,et al.  The Lens Redshift and Galaxy Environment for HE 0435−1223 , 2004, astro-ph/0410614.

[15]  E. Agol,et al.  Non-LTE, Relativistic Accretion Disk Fits to 3C 273 and the Origin of the Lyman Limit Spectral Break , 2001, astro-ph/0108451.

[16]  D. Long,et al.  The multiple quasar Q2237+0305 under a microlensing caustic , 2007, 0711.4265.

[17]  R. Webster,et al.  The accretion disc in the quasar SDSS J0924+0219★ , 2009, 0905.2651.

[18]  A. Bolton,et al.  The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early-Type Lens Galaxies* , 2005, astro-ph/0512044.

[19]  Astrophysics,et al.  THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.

[20]  C. Reynolds,et al.  Fluorescent iron lines as a probe of astrophysical black hole systems , 2003 .

[21]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[22]  C. Kochanek Gravitational Lensing: Recent Progress and Future Goals , 2000 .

[23]  J. Winn,et al.  Measuring Supermassive Black Holes in Distant Galaxies with Central Lensed Images , 2004, astro-ph/0412034.

[24]  C. Kochanek,et al.  DISCOVERY OF ENERGY-DEPENDENT X-RAY MICROLENSING IN Q2237+0305 , 2011, 1106.6052.

[25]  Paul L. Schechter,et al.  X-RAY AND OPTICAL FLUX RATIO ANOMALIES IN QUADRUPLY LENSED QUASARS. II. MAPPING THE DARK MATTER CONTENT IN ELLIPTICAL GALAXIES , 2011, 1108.2725.

[26]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[27]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[28]  C. Kochanek,et al.  A STUDY OF GRAVITATIONAL LENS CHROMATICITY USING GROUND-BASED NARROWBAND PHOTOMETRY , 2010, 1008.3399.

[29]  E. Agol,et al.  QUASAR ACCRETION DISKS ARE STRONGLY INHOMOGENEOUS , 2010, 1012.3169.

[30]  C. Kochanek,et al.  X-RAY MONITORING OF GRAVITATIONAL LENSES WITH CHANDRA , 2012, 1202.5304.

[31]  Tucson,et al.  Dust and Extinction Curves in Galaxies with z > 0: The Interstellar Medium of Gravitational Lens Galaxies , 1999, astro-ph/9901037.

[32]  Brandon C. Kelly,et al.  Are the Variations in Quasar Optical Flux Driven by Thermal Fluctuations , 2009 .

[33]  S. Collier Evidence for accretion disc reprocessing in QSO 0957+561 , 2001 .

[34]  Institute for Advanced Study,et al.  Tests for Substructure in Gravitational Lenses , 2003, astro-ph/0302036.

[35]  L. Popović,et al.  A Study of the Correlation between the Amplification of the Fe Kα Line and the X-Ray Continuum of Quasars due to Microlensing , 2006 .

[36]  Constraints on the Inner Mass Profiles of Lensing Galaxies from Missing Odd Images , 2000, astro-ph/0009079.

[37]  M. C. Weisskopf,et al.  An Overview of the Performance and Scientific Results from the Chandra X‐Ray Observatory , 2001, astro-ph/0110308.

[38]  B. McLeod,et al.  The Time Delays of Gravitational Lens HE 0435–1223: An Early-Type Galaxy with a Rising Rotation Curve , 2005, astro-ph/0508070.

[39]  Joshua N. Winn,et al.  The central image of a gravitationally lensed quasar , 2004, Nature.

[40]  Mark W. Bautz,et al.  Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[41]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[42]  G. Richards,et al.  Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112 , 2005, astro-ph/0503310.

[43]  C. Kochanek,et al.  X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.

[44]  P. Schechter,et al.  X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. I. Zooming in on Quasar Emission Regions , 2006, astro-ph/0607655.

[45]  Christopher S. Kochanek,et al.  The Spatial Structure of an Accretion Disk , 2007, 0707.0003.

[46]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[47]  C. Kochanek,et al.  BLACK HOLE MASS ESTIMATES BASED ON C iv ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES , 2010, 1009.1145.

[48]  C. Keeton,et al.  NEAR-INFRARED K AND L′ FLUX RATIOS IN SIX LENSED QUASARS , 2011, 1101.1917.

[49]  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[50]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[51]  Darren L. DePoy,et al.  A Novel Double Imaging Camera (ANDICAM) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[52]  C. Kochanek,et al.  THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS , 2011, 1104.2356.

[53]  Astrophysikalisches Institut Potsdam,et al.  The influence of central black holes on gravitational lenses , 2001 .

[54]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[55]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223 , 2010, 1009.1473.

[56]  C. Kochanek,et al.  MICROLENSING EVIDENCE THAT A TYPE 1 QUASAR IS VIEWED FACE-ON , 2009, 0910.3669.

[57]  Heidelberg,et al.  Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 ≡ the Einstein Cross I. Spectrophotometric monitoring with the VLT , 2007, 0709.2828.

[58]  A. Zakharov,et al.  Microlensing of the X-ray, UV and optical emission regions of quasars: simulations of the time-scales and amplitude variations of microlensing events , 2008, 0801.4473.

[59]  Chien Y. Peng,et al.  REDSHIFT EVOLUTION IN BLACK HOLE–BULGE RELATIONS: TESTING C iv-BASED BLACK HOLE MASSES , 2009, 0911.0685.

[60]  Institute for Advanced Study,et al.  HE 0435-1223 : a wide separation quadruple QSO and gravitational lens , 2002, astro-ph/0207062.

[61]  C. Keeton,et al.  Microlensing of an extended source by a power-law mass distribution , 2006, astro-ph/0612542.

[62]  R. Webster,et al.  A microlensing study of the accretion disc in the quasar MG 0414+0534 , 2008, 0810.1092.