Spectral Theory and its Applications
暂无分享,去创建一个
[1] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[2] J. L McGregor. Solvability criteria for certain N-dimensional moment problems☆ , 1980 .
[3] B. Helffer,et al. Superconductivity Near the Normal State Under the Action of Electric Currents and Induced Magnetic Fields in $${\mathbb{R}^2}$$ , 2010 .
[4] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[5] O. Staffans. Well-Posed Linear Systems , 2005 .
[6] Israel Michael Sigal,et al. Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .
[7] Steen Pedersen,et al. Moment problems and subnormality , 1990 .
[8] F. Nier,et al. Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator , 2008, 0809.0574.
[9] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[10] Konrad Schmüdgen,et al. Unbounded Operator Algebras and Representation Theory , 1990 .
[11] M. Zworski. A remark on a paper of E. B. Davies , 2001 .
[12] Bernard Helffer,et al. Multiple wells in the semi-classical limit I , 1984 .
[13] E. Davies,et al. Non‐Self‐Adjoint Differential Operators , 2002 .
[14] R. Benguria,et al. Fourier transform, null variety, and Laplacian's eigenvalues , 2008, 0801.1617.
[15] P. Masani. Dilations as Propagators of Hilbertian Varieties , 1978 .
[16] B. Simon,et al. Schrödinger operators with magnetic fields , 1981 .
[17] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[18] L. Thomas,et al. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .
[19] Hamburger and Stieltjes moment problems in several variables , 2002 .
[20] Bernard Helffer,et al. Spectral Methods in Surface Superconductivity , 2010 .
[22] E. B. Davies,et al. Spectral instability for some Schrödinger operators , 2000, Numerische Mathematik.
[23] D. Huet. Décomposition spectrale et opérateurs , 1976 .
[24] F. Hérau,et al. Tunnel Effect for Kramers–Fokker–Planck Type Operators , 2007, math/0703684.
[25] A. Devinatz. Two parameter moment problems , 1957 .
[26] Moments and Positivity , 2000 .
[27] B. Simon. Functional integration and quantum physics , 1979 .
[28] B. Sz.-Nagy. A moment problem for self-adjoint operators , 1952 .
[29] J. S. MacNerney. Hermitian moment sequences , 1962 .
[30] J. Sjoestrand. Resolvent Estimates for Non-Selfadjoint Operators via Semigroups , 2009, 0906.0094.
[31] A Complete Study of the Pseudo‐Spectrum for the Rotated Harmonic Oscillator , 2006 .
[32] W. Stinespring. Positive functions on *-algebras , 1955 .
[33] Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra , 1999, math/9909179.
[34] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[35] Alain Grigis,et al. Microlocal Analysis for Differential Operators: An Introduction , 1994 .
[36] J. Stochel. Decomposition and disintegration of positive definite kernels on convex *-semigroups , 1992 .
[37] J. Rubinstein,et al. The Resistive State in a Superconducting Wire: Bifurcation from the Normal State , 2007, 0712.3531.
[38] Larry Gearhart,et al. Spectral theory for contraction semigroups on Hilbert space , 1978 .
[39] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[40] J. Nourrigat,et al. Hypoellipticit'e maximale pour des op'erateurs polyn?omes de champs de vecteurs , 1980 .
[41] Shing-Tung Yau,et al. On the Schrödinger equation and the eigenvalue problem , 1983 .
[42] J. Friedrich. Operator Moment Problems , 1991 .
[43] C. Berg,et al. Harmonic Analysis on Semigroups , 1984 .
[44] Jan Prüss,et al. On the spectrum of ₀-semigroups , 1984 .
[45] R. Curto,et al. Flat Extensions of Positive Moment Matrices: Recursively Generated Relations , 1998 .
[46] Christiane Tretter,et al. Spectral properties of the Orr-Sommerfeld problem , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[47] F. H. Szafraniec,et al. The complex moment problem and subnormality : a polar decomposition approach , 1998 .
[48] ON THE COMMUTATIVE FAMILY OF SUBNORMAL OPERATORS , 1958 .
[49] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[50] Ameer Athavale. Holomorphic kernels and commuting operators , 1987 .
[51] Mildred Hager. Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle , 2006 .
[52] I. Herbst. Dilation analyticity in constant electric field , 1979 .
[53] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[54] A. Atzmon. A moment problem for positive measures on the unit disc. , 1975 .
[55] Moment Problems for Multi-sequences of Operators , 1998 .
[56] C. Simader. Essential self-adjointness of Schrödinger operators bounded from below , 1978 .
[57] E. Davies,et al. Linear Operators and their Spectra , 2007 .
[58] A. Lubin. Weighted shifts and commuting normal extension , 1979, Journal of the Australian Mathematical Society.
[59] B. Helffer. Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics , 2002 .
[60] Mouez Dimassi,et al. Spectral asymptotics in the semi-classical limit , 1999 .
[61] Christiaan C. Stolk,et al. Semiclassical Analysis for the Kramers–Fokker–Planck Equation , 2004, math/0406275.
[62] B. Helffer,et al. Eigenvalues Variation. I.: Neumann Problem for Sturm-Liouville Operators , 1993 .
[63] B. Helffer. Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .
[64] Cherfils,et al. Analytic solutions of the rayleigh equation for linear density profiles , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[65] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[66] J. Agler. The Arveson Extension Theorem and coanalytic models , 1982 .
[67] Tosio Kato. Perturbation theory for linear operators , 1966 .
[68] Andrew J. Bernoff,et al. Onset of superconductivity in decreasing fields for general domains , 1998 .
[69] D. Robert. Autour de l'approximation semi-classique , 1987 .
[70] B. Simon. Trace ideals and their applications , 1979 .
[71] B. Helffer. ON PSEUDO-SPECTRAL PROBLEMS RELATED TO A TIME-DEPENDENT MODEL IN SUPERCONDUCTIVITY WITH ELECTRIC CURRENT , 2011 .
[72] E. Davies. Semi-Classical States for Non-Self-Adjoint Schrödinger Operators , 1998, math/9803129.
[73] F. Vasilescu. Quaternionic Cayley Transform , 1999 .
[74] H. Risken. The Fokker-Planck equation : methods of solution and applications , 1985 .
[75] Christian Berg,et al. Rotation invariant moment problems , 1991 .
[76] D. Handelman. Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .
[77] Ari Laptev,et al. Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces , 1997 .
[78] E. Davies. Wild Spectral Behaviour of Anharmonic Oscillators , 2000 .
[79] P. Masani. Quasi-isometric measures and their applications , 1970 .
[80] K. Schmüdgen. TheK-moment problem for compact semi-algebraic sets , 1991 .
[81] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[82] 渋谷 泰隆. Global theory of a second order linear ordinary differential equation with a polynomial coefficient , 1975 .
[83] David E. Edmunds,et al. Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.
[84] E. Haviland,et al. On the Momentum Problem for Distribution Functions in More Than One Dimension. II , 1935 .
[85] M. Zworski,et al. Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .
[86] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[87] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[88] W. Rudin. Real and complex analysis , 1968 .
[89] B. Simon,et al. Schrödinger operators with magnetic fields. I. general interactions , 1978 .
[90] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[91] F. Vasilescu. Existence of Unitary Dilations as a Moment Problem , 2003 .
[92] E. Davies,et al. Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[93] J. Glimm,et al. Quantum Physics: A Functional Integral Point of View , 1981 .
[94] P. Raviart,et al. Asymptotic Results for the Linear Stage of the Rayleigh—Taylor Instability , 2001 .
[95] David Krejcirík,et al. The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions , 2012, Asymptot. Anal..
[96] G. Hardy,et al. Note on a theorem of Hilbert , 1920 .
[97] Y. C. Verdière,et al. Spectres de graphes , 1998 .
[98] W. Arendt. Vector-valued laplace transforms and cauchy problems , 2002 .
[99] J. Prüss. On the Spectrum of C 0 -Semigroups , 1984 .
[100] V. Georgescu,et al. On the Virial Theorem in Quantum Mechanics , 1999 .
[101] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[102] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[103] P. Blanchard,et al. Bound states for Schrodinger Hamiltonians: Phase space methods and applications , 1996 .
[104] L. Hörmander. Hypoelliptic second order differential equations , 1967 .
[105] И.М. Гельфанд,et al. On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .
[106] Pseudospectra of semi-classical (pseudo)differential operators , 2003, math/0301242.
[107] J. Sjoestrand,et al. Elementary linear algebra for advanced spectral problems , 2003, math/0312166.
[108] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[109] J. Eckmann,et al. Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures , 1998, chao-dyn/9804001.
[110] Y. ALMOG,et al. The Stability of the Normal State of Superconductors in the Presence of Electric Currents , 2008, SIAM J. Math. Anal..