Mixed Finite Element Methods for Problems with Robin Boundary Conditions

We derive new a priori and a posteriori error estimates for mixed finite element discretizations of second-order elliptic problems with general Robin boundary conditions, parameterized by $\varepsilon\geq0$. The estimates are robust in $\varepsilon$, ranging from pure Dirichlet conditions to pure Neumann conditions. We also show that hybridization leads to a well-conditioned linear system. A series of numerical experiments is presented that verify our theoretical results.

[1]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[2]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[3]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[4]  Rolf Stenberg,et al.  Energy norm a posteriori error estimates for mixed finite element methods , 2006, Math. Comput..

[5]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[6]  S. Ponnusamy,et al.  On zeros and boundary behavior of bounded harmonic functions , 2010 .

[7]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[8]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[9]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[10]  R. Stenberg,et al.  Error-controlled adaptive mixed finite element methods for second-order elliptic equations , 2008 .

[11]  Rolf Stenberg,et al.  Postprocessing schemes for some mixed finite elements , 1991 .

[12]  Rolf Stenberg Some new families of finite elements for the stokes equations , 1989 .

[13]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[14]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[15]  Harri Hakula,et al.  On Moduli of Rings and Quadrilaterals: Algorithms and Experiments , 2009, SIAM J. Sci. Comput..