Minimax Robust Hypothesis Testing

Minimax robust hypothesis testing is studied for the cases where the collected data samples are corrupted by outliers and are mismodeled due to modeling errors. For the former case, Huber’s clipped likelihood ratio test is introduced and analyzed. For the latter case, first, a robust hypothesis testing scheme based on the Kullback–Leibler divergence is designed. This approach generalizes a previous work by Levy. Second, Dabak and Johnson’s asymptotically robust test is introduced, and other possible designs based on <inline-formula> <tex-math notation="LaTeX">$f$ </tex-math></inline-formula>-divergences are investigated. All proposed and analyzed robust tests are extended to fixed sample size and sequential probability ratio tests. Simulations are provided to exemplify and evaluate the theoretical derivations.

[1]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[2]  Harald Cram'er,et al.  Sur un nouveau théorème-limite de la théorie des probabilités , 2018 .

[3]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[4]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[5]  Abdelhak M. Zoubir,et al.  Robust hypothesis testing for modeling errors , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[6]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[7]  Bernard C. Levy,et al.  Principles of Signal Detection and Parameter Estimation , 2008 .

[8]  F. Y. Suratman,et al.  Effects of model errors on multiple antenna based spectrum sensing using sequential detection , 2013, 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA).

[9]  L. Dworsky An Introduction to Probability , 2008 .

[10]  P. J. Huber A Robust Version of the Probability Ratio Test , 1965 .

[11]  Abdelhak M. Zoubir,et al.  Robust hypothesis testing with composite distances , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[12]  M. Sion On general minimax theorems , 1958 .

[13]  M. Kanefsky,et al.  Introduction to nonparametric detection with applications , 1977, Proceedings of the IEEE.

[14]  Abdelhak M. Zoubir,et al.  Robust hypothesis testing with squared Hellinger distance , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[15]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[16]  Neri Merhav,et al.  When is the generalized likelihood ratio test optimal? , 1992, IEEE Trans. Inf. Theory.

[17]  Bernard C. Levy,et al.  Robust Hypothesis Testing With a Relative Entropy Tolerance , 2007, IEEE Transactions on Information Theory.

[18]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[19]  A. Tychonoff Über die topologische Erweiterung von Räumen , 1930 .

[20]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[21]  Abdelhak M. Zoubir,et al.  Robust detection under communication constraints , 2013, 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[22]  W. Rudin Principles of mathematical analysis , 1964 .

[23]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[24]  P. J. Huber Robust confidence limits , 1968 .

[25]  Igor Vajda,et al.  On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.

[26]  Pham Xuan Quang,et al.  Robust Sequential Testing , 1985 .

[27]  P. T. Johnstone,et al.  Tychonoff's theorem without the axiom of choice , 1981 .

[28]  Alexey Kharin,et al.  Robust Sequential Testing of Hypotheses on Discrete Probability Distributions , 2016 .