Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  D. Mazumder,et al.  Biokinetics and discrimination factors for δ13C and δ15N in the omnivorous freshwater crustacean, Cherax destructor , 2012 .

[3]  A. Huryn,et al.  Re‐examining extreme longevity of the cave crayfish Orconectes australis using new mark–recapture data: a lesson on the limitations of iterative size‐at‐age models , 2012 .

[4]  A. Huryn,et al.  Effects of organic matter and season on leaf litter colonisation and breakdown in cave streams , 2012 .

[5]  K. Winemiller,et al.  Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. , 2011, Ecology.

[6]  A. Huryn,et al.  Effects of organic matter availability on the life history and production of a top vertebrate predator (Plethodontidae: Gyrinophilus palleucus) in two cave streams , 2011 .

[7]  J. Benstead,et al.  Relating carrion breakdown rates to ambient resource level and community structure in four cave stream ecosystems , 2011, Journal of the North American Benthological Society.

[8]  M. Christman,et al.  The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. , 2011, Ecology.

[9]  Richard Inger,et al.  Source Partitioning Using Stable Isotopes: Coping with Too Much Variation , 2010, PloS one.

[10]  K. Simon The Biology of Caves and Other Subterranean Habitats. David C. Culver and Tanja Pipan. , 2009 .

[11]  A. Benke,et al.  Spatial and temporal patterns of microcrustacean assemblage structure and secondary production in a wetland ecosystem , 2009 .

[12]  Timothy J. Cooney,et al.  Influence of Dissolved Organic Matter and Invertebrates on the Function of Microbial Films in Groundwater , 2009, Microbial Ecology.

[13]  E. Angulo,et al.  Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction , 2009 .

[14]  T. C. Kane,et al.  Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems , 2009 .

[15]  J. Kizhakudan,et al.  Effect of dietary protein on the growth of spiny lobster Panulirus homarus (Linnaeus) , 2009 .

[16]  A. Rosemond,et al.  Nutrient enrichment reduces constraints on material flows in a detritus-based food web. , 2007, Ecology.

[17]  J. Kammenga,et al.  Response of secondary Production and its components to multiple stressors in nematode field populations , 2007 .

[18]  T. Roslin,et al.  Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology , 2007 .

[19]  A. Huryn,et al.  CHAPTER 29 – Secondary Production of Macroinvertebrates , 2007 .

[20]  A. Engel OBSERVATIONS ON THE BIODIVERSITY OF SULFIDIC KARST HABITATS , 2007 .

[21]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[22]  D. Culver,et al.  A CONCEPTUAL MODEL OF THE FLOW AND DISTRIBUTION OF ORGANIC CARBON IN CAVES , 2007 .

[23]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[24]  O. Giere,et al.  Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters , 2006, Extremophiles.

[25]  T. Datry,et al.  Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer , 2005, Journal of the North American Benthological Society.

[26]  V. Resh,et al.  Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea , 2005 .

[27]  P. Bennett,et al.  Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic "Epsilonproteobacteria". , 2004, FEMS microbiology ecology.

[28]  D. Post,et al.  Detritus, trophic dynamics and biodiversity , 2004 .

[29]  B. Spänhoff,et al.  Breakdown rates of wood in streams , 2004, Journal of the North American Benthological Society.

[30]  B. Šket The nature of biodiversity in hypogean waters and how it is endangered , 1999, Biodiversity & Conservation.

[31]  L. Sinton The macroinvertebrates in a sewage-polluted aquifer , 1984, Hydrobiologia.

[32]  S. Macko,et al.  Food web structure and the role of epilithic biofilms in cave streams , 2003 .

[33]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[34]  M. Vanderklift,et al.  Sources of variation in consumer-diet δ15N enrichment: a meta-analysis , 2003, Oecologia.

[35]  L. Dyer,et al.  Top‐down and bottom‐up diversity cascades in detrital vs. living food webs , 2002 .

[36]  P. Wood,et al.  The impact of pollution on aquatic invertebrates within a subterranean ecosystem - out of sight out of mind , 2002 .

[37]  D. Stagliano,et al.  Macroinvertebrate Production and Trophic Structure in a Tallgrass Prairie Headwater Stream , 2002, Journal of the North American Benthological Society.

[38]  E. F. Benfield,et al.  Leaf and wood breakdown in cave streams , 2001, Journal of the North American Benthological Society.

[39]  G. Likens,et al.  Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest , 2001, Journal of the North American Benthological Society.

[40]  C. Montes,et al.  Bioenergetics of juveniles of red swamp crayfish (Procambarus clarkii). , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[41]  A. Rosemond,et al.  A TEST OF TOP-DOWN AND BOTTOM-UP CONTROL IN A DETRITUS-BASED FOOD WEB , 2001 .

[42]  Roger W. Johnson,et al.  An Introduction to the Bootstrap , 2001 .

[43]  R. Hall,et al.  Organic matter flow in stream food Webs with reduced detrital resource base , 2000 .

[44]  B. Menge,et al.  Top-down and bottom-up community regulation in marine rocky intertidal habitats. , 2000, Journal of experimental marine biology and ecology.

[45]  K. Lavoie,et al.  Chapter 12. The trophic basis of subsurface ecosystems , 2000 .

[46]  J. Meyer,et al.  EFFECTS OF RESOURCE LIMITATION ON A DETRITAL‐BASED ECOSYSTEM , 1999 .

[47]  A. Huryn,et al.  Length-Mass Relationships for Freshwater Macroinvertebrates in North America with Particular Reference to the Southeastern United States , 1999, Journal of the North American Benthological Society.

[48]  Benrong Chen,et al.  BOTTOM-UP LIMITATION OF PREDACEOUS ARTHROPODS IN A DETRITUS-BASED TERRESTRIAL FOOD WEB , 1999 .

[49]  B. E. Taylor,et al.  Abundance, biomass and production of aquatic invertebrates in Rainbow Bay, a temporary wetland in South Carolina, USA , 1998 .

[50]  J. Meyer,et al.  THE TROPHIC SIGNIFICANCE OF BACTERIA IN A DETRITUS-BASED STREAM FOOD WEB , 1998 .

[51]  A. L. Buikema,et al.  Effects of Organic Pollution on an Appalachian Cave: Changes in Macroinvertebrate Populations and Food Supplies , 1997 .

[52]  Carl J. Schwarz,et al.  A General Methodology for the Analysis of Capture-Recapture Experiments in Open Populations , 1996 .

[53]  G. Polis,et al.  Food Web Complexity and Community Dynamics , 1996, The American Naturalist.

[54]  S. Hendricks Bacterial biomass, activity, and production within the hyporheic zone of a north-temperate stream , 1996 .

[55]  T. C. Kane,et al.  Adaptation and Natural Selection in Caves: The Evolution of Gammarus minus , 1995 .

[56]  W. Momot Redefining the role of crayfish in aquatic ecosystems , 1995 .

[57]  D. Strayer 11 – Limits to Biological Distributions in Groundwater , 1994 .

[58]  J. Notenboom,et al.  18 – Groundwater Contamination and Its Impact on Groundwater Animals and Ecosystems , 1994 .

[59]  M. Power,et al.  TOP-DOWN AND BOTTOM-UP FORCES IN FOOD WEBS: DO PLANTS HAVE PRIMACY? , 1992 .

[60]  M. Dobson,et al.  A test of resource limitation among shredding detritivores in low order streams in southern England , 1992 .

[61]  Humberto Villarreal A Partial Energy Budget for the Australian Crayfish Cherax tenuimanus , 1991 .

[62]  E. Madsen,et al.  In situ biodegradation: microbiological patterns in a contaminated aquifer , 1991, Science.

[63]  J. Gentle,et al.  Randomization and Monte Carlo Methods in Biology. , 1990 .

[64]  N. Grimm ROLE OF MACROINVERTEBRATES IN NITROGEN DYNAMICS OF A DESERT STREAM , 1988 .

[65]  D. Strayer On the limits to secondary production , 1988 .

[66]  A. Huryn,et al.  Production and litter processing by crayfish in an Appalachian mountain stream , 1987 .

[67]  L. A. Smock,et al.  The trophic basis of production of the macroinvertebrate community of a southeastern U.S.A. blackwater stream , 1986 .

[68]  J. F. McNabb,et al.  Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination , 1986 .

[69]  David A. Culver,et al.  Biomass of Freshwater Crustacean Zooplankton from Length–Weight Regressions , 1985 .

[70]  D. Culver Cave Life: Evolution and Ecology , 1982 .

[71]  R. Ross Energetics of Euphausia pacifica. I. Effects of body carbon and nitrogen and temperature on measured and predicted production , 1982 .

[72]  R. Ross Energetics of Euphausia pacifica. II. Complete carbon and nitrogen budgets at 8° and 12° C throughout the life span , 1982 .

[73]  L. Oksanen,et al.  Exploitation Ecosystems in Gradients of Primary Productivity , 1981, The American Naturalist.

[74]  J. B. Wallace,et al.  Trophic Basis of Production Among Net-Spinning Caddisflies in a Southern Appalachian Stream , 1980 .

[75]  K. Cummins,et al.  Effects of Food Quality on Growth of a Stream Detritivore, Paratendipes Albimanus (Meigen) (Diptera: Chironomidae) , 1979 .

[76]  S. Fretwell,et al.  The Regulation of Plant Communities by the Food Chains Exploiting Them , 2015 .

[77]  P. Calow LENGTH-DRY WEIGHT RELATIONSHIPS IN SNAILS: SOME EXPLANATORY MODELS , 1975 .

[78]  G. Williams Adaptation and Natural Selection , 2018 .

[79]  L. Slobodkin,et al.  Community Structure, Population Control, and Competition , 1960, The American Naturalist.