Adaptive interferometric imaging in clutter and optimal illumination

A frequently used broadband array imaging method is Kirchhoff or travel time migration. In smooth and known media Kirchhoff migration works quite well, with range resolution proportional to the reciprocal of the bandwidth and cross range resolution that is proportional to the reciprocal of the array size. In a randomly inhomogeneous medium, Kirchhoff migration is unreliable because the images depend on the detailed scattering properties of the random medium that are not known. In Borcea et al (2005 Interferometric array imaging in clutter Inverse Problems 21 1419–60) we introduced an imaging functional that does not depend on the detailed properties of the random medium, that is, it is statistically stable. This is the coherent interferometric (CINT) imaging functional, which can be viewed as a smoothed version of Kirchhoff migration. Smoothing increases the statistical stability of the image but causes blurring. In this paper, we introduce an adaptive version of CINT in which there is an optimal trade-off between statistical stability and blurring. We also introduce optimal illumination schemes for achieving the best possible resolution of the images obtained with CINT.

[1]  James G. Berryman,et al.  Statistical stability and time-reversal imaging in random media , 2002 .

[2]  Arthur B. Baggeroer,et al.  An overview of matched field methods in ocean acoustics , 1993 .

[3]  Akira Ishimaru,et al.  Experimental studies on circular SAR imaging in clutter using angular correlation function technique , 1999, IEEE Trans. Geosci. Remote. Sens..

[4]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[5]  F. Santosa,et al.  Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set , 1998 .

[6]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[7]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[8]  Liliana Borcea,et al.  A resolution study for imaging and time reversal in random media , 2007 .

[9]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[10]  E. Dussaud Velocity analysis in the presence of uncertainty , 2005 .

[11]  Wavefield Inversion in Nondestructive Testing , 2004 .

[12]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[13]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.

[14]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[15]  Roux,et al.  Robust Acoustic Time Reversal with High-Order Multiple Scattering. , 1995, Physical review letters.

[16]  J. Dennis,et al.  Pattern search algorithms for mixed variable general constrained optimization problems , 2003 .

[17]  Lin,et al.  Quantitative imaging using a time-domain eigenfunction method , 2000, The Journal of the Acoustical Society of America.

[18]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[19]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[20]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[21]  Wei-Liem Loh,et al.  Estimating structured correlation matrices in smooth Gaussian random field models , 2000 .

[22]  Richard L. Weaver,et al.  On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons. , 2001, Ultrasonics.

[23]  S. Arridge Optical tomography in medical imaging , 1999 .

[24]  Jon F. Claerbout,et al.  DOWNWARD CONTINUATION OF MOVEOUT‐CORRECTED SEISMOGRAMS , 1972 .

[25]  H. Bucker Use of calculated sound fields and matched‐field detection to locate sound sources in shallow water , 1976 .

[26]  Mathias Fink,et al.  The iterative time reversal process: Analysis of the convergence , 1995 .

[27]  Liliana Borcea,et al.  Coherent Interferometry in Finely Layered Random Media , 2006, Multiscale Model. Simul..

[28]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[29]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[30]  J. Claerbout,et al.  Acoustic daylight imaging via spectral factorization: helioseismology and reservoir monitoring , 1999 .

[31]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[32]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[35]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[36]  T. D. Mast,et al.  Focusing and imaging using eigenfunctions of the scattering operator. , 1997, The Journal of the Acoustical Society of America.

[37]  Mathias Fink,et al.  Revisiting iterative time reversal processing: application to detection of multiple targets. , 2004, The Journal of the Acoustical Society of America.

[38]  Jon F. Claerbout,et al.  VELOCITY ESTIMATION AND DOWNWARD CONTINUATION BY WAVEFRONT SYNTHESIS , 1978 .

[39]  Maarten V. de Hoop,et al.  Microlocal analysis of seismic inverse scattering in anisotropic elastic media , 2002 .

[40]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[41]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[42]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[43]  Dario Fasino,et al.  An inverse Robin problem for Laplace's equation: theoretical results and numerical methods , 1999 .

[44]  J. Sheng,et al.  Interferometric/daylight seismic imaging , 2004 .

[45]  Eliane Bécache,et al.  Étude d'un nouvel élément fini mixte permettant la condensation de masse , 1997 .

[46]  W. Symes A Differential Semblance Criterion for Inversion of Multioffset Seismic Reflection Data , 1993 .

[47]  Liliana Borcea,et al.  Statistically stable ultrasonic imaging in random media. , 2002, The Journal of the Acoustical Society of America.

[48]  William S. Hodgkiss,et al.  Mirages in shallow water matched‐field processing , 1995 .

[49]  David Isaacson,et al.  Optimal Acoustic Measurements , 2001, SIAM J. Appl. Math..

[50]  B. Uscinski,et al.  Analytical solution of the fourth-moment equation and interpretation as a set of phase screens , 1985 .

[51]  M. V. Rossum,et al.  Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion , 1998, cond-mat/9804141.

[52]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[53]  Christiaan C. Stolk,et al.  Smooth objective functionals for seismic velocity inversion , 2003 .

[54]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[55]  G. Papanicolaou,et al.  Interferometric array imaging in clutter , 2005 .

[56]  Derode,et al.  Limits of time-reversal focusing through multiple scattering: long-range correlation , 2000, The Journal of the Acoustical Society of America.

[57]  Roel Snieder,et al.  Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity , 2002, Science.

[58]  J. Krolik Matched‐field minimum variance beamforming in a random ocean channel , 1992 .

[59]  Brian D. Ripley,et al.  Spatial Statistics: Ripley/Spatial Statistics , 2005 .

[60]  A. P. E. ten Kroode,et al.  A microlocal analysis of migration , 1998 .

[61]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[62]  Liliana Borcea,et al.  Coherent interferometric imaging in clutter , 2006 .

[63]  Mathias Fink,et al.  Eigenmodes of the time reversal operator: a solution to selective focusing in multiple-target media , 1994 .

[64]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[65]  S. Mallat A wavelet tour of signal processing , 1998 .

[66]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[67]  P. Waterman,et al.  MULTIPLE SCATTERING OF WAVES , 1961 .

[68]  G. Papanicolaou,et al.  Optimal waveform design for array imaging , 2007 .