The compound Poisson risk model with a threshold dividend strategy

Abstract In this paper, we present the classical compound Poisson risk model with a threshold dividend strategy. Under such as strategy, no dividends are paid if the insurer’s surplus is below certain threshold level. When the surplus is above this threshold level, dividends are paid at a constant rate that does not exceed the premium rate. Two integro-differential equations for the Gerber–Shiu discounted penalty function are derived and solved. The analytic results obtained are utilized to derive the probability of ultimate ruin, the time of ruin, the distribution of the first surplus drop below the initial level, and the joint distributions and moments of the surplus immediately before ruin and the deficit at ruin. The special cases where the claim size distribution is exponential and a combination of exponentials are considered in some detail.

[1]  Carl-Otto Segerdahl On some distributions in time connected with the collective theory of risk , 1970 .

[2]  Hans-Ulrich Gerber,et al.  Entscheidungskriterien für den zusammengesetzten Poisson-Prozess , 1969 .

[3]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[4]  Howard R. Waters,et al.  Some Optimal Dividends Problems , 2004, ASTIN Bulletin.

[5]  José Garrido,et al.  On a class of renewal risk models with a constant dividend barrier , 2004 .

[6]  Hans U. Gerber,et al.  On Optimal Dividend Strategies In The Compound Poisson Model , 2006 .

[7]  Symbolic calculation of the moments of the time of ruin , 2004 .

[8]  Harry H. Panjer,et al.  Insurance Risk Models , 1992 .

[9]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions , 1998 .

[10]  Jürgen Hartinger,et al.  On the distribution of dividend payments and the discounted penalty function in a risk model with linear dividend barrier , 2005 .

[11]  Hans U. Gerber,et al.  On optimal dividends: From reflection to refraction , 2006 .

[12]  Hans U. Gerber,et al.  On the probability of ruin in the presence of a linear dividend barrier , 1981 .

[13]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions, 2nd edition , 2004 .

[14]  Gordon E. Willmot,et al.  Analysis of a defective renewal equation arising in ruin theory , 1999 .

[15]  Hans U. Gerber Asa,et al.  The Time Value of Ruin in a Sparre Andersen Model , 2005 .

[16]  Shuanming Li,et al.  On ruin for the Erlang(n) risk process , 2004 .

[17]  H. Gerber,et al.  On the Time Value of Ruin , 1997 .

[18]  William Breedlove,et al.  Society of Actuaries , 2018, The Grants Register 2019.

[19]  Hansjörg Albrecher,et al.  Risk Theory with a nonlinear Dividend Barrier , 2002, Computing.

[20]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[21]  Gordon E. Willmot,et al.  The moments of the time of ruin, the surplus before ruin, and the deficit at ruin , 2000 .

[22]  Bjarne Højgaard,et al.  Optimal Dynamic Premium Control in Non-life Insurance. Maximizing Dividend Pay-outs , 2002 .

[23]  Jostein Paulsen,et al.  Optimal choice of dividend barriers for a risk process with stochastic return on investments , 1997 .

[24]  Gordon E. Willmot,et al.  The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function , 2003 .

[25]  S. Haberman,et al.  An Introduction to Mathematical Risk Theory . By Hans U. Gerber [S. S. Huebner Foundation, R. D. Irwin Inc. Homeward Illinois, 1979] , 1981 .

[26]  Søren Asmussen,et al.  Ruin probabilities , 2001, Advanced series on statistical science and applied probability.

[27]  D. Dickson,et al.  On the time to ruin for Erlang(2) risk processes , 2001 .

[28]  Hans U. Gerber,et al.  Games of Economic Survival with Discrete- and Continuous-Income Processes , 1972, Oper. Res..

[29]  D. Dickson,et al.  Lundberg Approximations for Compound Distributions with Insurance Applications . By G. E. Willmot and X. S. Lin. (Springer, 2000) , 2001, British Actuarial Journal.

[30]  The Gerber-Shiu discounted penalty function in the stationary renewal risk model , 2003 .