NATURE OF H-BONDING IN CLUSTERS, LIQUIDS, AND ENZYMES : AN AB INITIO, NATURAL BOND ORBITAL PERSPECTIVE

[1]  R. Saykally,et al.  Quantifying Hydrogen Bond Cooperativity in Water: VRT Spectroscopy of the Water Tetramer , 1996, Science.

[2]  R. Saykally,et al.  Vibration-Rotation Tunneling Spectra of the Water Pentamer: Structure and Dynamics , 1996, Science.

[3]  R. Ludwig,et al.  Experimental and theoretical determination of the temperature dependence of deuteron and oxygen quadrupole coupling constants of liquid water , 1995 .

[4]  R. Ludwig,et al.  Temperature dependence of hydrogen bonding in neat, liquid formamide , 1995 .

[5]  J. Markley,et al.  Theoretical Studies of Protium/Deuterium Fractionation Factors and Cooperative Hydrogen Bonding in Peptides , 1995 .

[6]  Frank Weinhold,et al.  Structure and spectroscopy of (HCN)n clusters: Cooperative and electronic delocalization effects in C–H⋅⋅⋅N hydrogen bonding , 1995 .

[7]  J. Markley,et al.  Ab Initio Calculations of Protium/Deuterium Fractionation Factors in O2H5+ Clusters , 1995 .

[8]  R. Ludwig,et al.  Experimental and theoretical studies of hydrogen bonding in neat, liquid formamide , 1995 .

[9]  S. Suhai Cooperativity and electron correlation effects on hydrogen bonding in infinite systems , 1994 .

[10]  Z. Derewenda,et al.  (His)Cε-H···O=C< Hydrogen Bond in the Active Sites of Serine Hydrolases , 1994 .

[11]  Martin Karplus,et al.  Solvent Influence on the Stability of the Peptide Hydrogen Bond: A Supramolecular Cooperative Effect , 1994 .

[12]  P. Frey,et al.  A low-barrier hydrogen bond in the catalytic triad of serine proteases. , 1994, Science.

[13]  W. Cleland,et al.  Low-barrier hydrogen bonds and enzymic catalysis. , 1994, Science.

[14]  Kersti Hermansson,et al.  AB-INITIO STUDY OF COOPERATIVITY IN WATER CHAINS - BINDING-ENERGIES AND ANHARMONIC FREQUENCIES , 1994 .

[15]  J. Birktoft,et al.  A glutamic acid specific serine protease utilizes a novel histidine triad in substrate binding. , 1993, Biochemistry.

[16]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume , 1991 .

[17]  J. Emsley,et al.  Hydrogen Bonding and Chemical Reactivity , 1991 .

[18]  A. Warshel,et al.  How do serine proteases really work? , 1989, Biochemistry.

[19]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[20]  Patrick W. Fowler,et al.  Theoretical studies of van der Waals molecules and intermolecular forces , 1988 .

[21]  J. Wells,et al.  Dissecting the catalytic triad of a serine protease , 1988, Nature.

[22]  J. Dunitz,et al.  Observation of an Eclipsed C sp3‐CH3 Bond in a Tricyclic Orthoamide; Experimental and Theoretical Evidence for CH ⃛O Hydrogen Bonds , 1987 .

[23]  W. Rutter,et al.  The catalytic role of the active site aspartic acid in serine proteases. , 1987, Science.

[24]  W. Bachovchin 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism. , 1986, Biochemistry.

[25]  Frank Weinhold,et al.  Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of , 1986 .

[26]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[27]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[28]  Frank Weinhold,et al.  Some remarks on the C–H bond dipole moment , 1986 .

[29]  H. Schaefer,et al.  Extensive theoretical studies of the hydrogen‐bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H−, and (NH3)2 , 1986 .

[30]  R. Huber,et al.  Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. , 1985, Journal of molecular biology.

[31]  E. Clementi,et al.  Energetics and hydration structures of a solvated gramicidin A transmembrane channel for potassium and sodium cations , 1985 .

[32]  L. Curtiss,et al.  Investigation of the differences in stability of the OC⋅⋅⋅HF and CO⋅⋅⋅HF complexes , 1985 .

[33]  Kenneth B. Wiberg,et al.  Charge redistribution in the molecular vibrations of acetylene, ethylene, ethane, methane, silane and the ammonium ion. Signs of the M-H bond moments , 1984 .

[34]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[35]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[36]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[37]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[38]  J. Almlöf Hydrogen bond studies. 71. Ab initio calculation of the vibrational structure and equilibrium geometry in HF−2 and DF−2 , 1972 .

[39]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[40]  J. Pople,et al.  Intermolecular energies of small water polymers , 1969 .

[41]  P A Kollman,et al.  On low-barrier hydrogen bonds and enzyme catalysis. , 1995, Science.

[42]  S. Graul,et al.  Deuterium isotope fractionation within protonated water clusters in the gas phase , 1990 .

[43]  J. Kraut Serine proteases: structure and mechanism of catalysis. , 1977, Annual review of biochemistry.

[44]  O. Exner Dipole moments in organic chemistry , 1975 .

[45]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[46]  Henry S. Frank,et al.  Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure , 1957 .

[47]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[48]  N. V. Sidgwick The electronic theory of valency , 1927 .

[49]  Gilbert N. Lewis,et al.  Valence And The Structure Of Atoms And Molecules , 1923 .

[50]  J. Gibbs Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .