Optomechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots

Strain tuning emerged as an appealing tool to tune fundamental optical properties of solid state quantum emitters. In particular, the wavelength and fine structure of quantum dot states could be tuned using hybrid semiconductor-piezoelectric devices. Here, we show how an applied external stress can directly impact the polarization properties of coupled InAs quantum dot-micropillar cavity systems. In our experiment, we find that we can reversibly tune the anisotropic polarization splitting of the fundamental microcavity mode by approximately 60 $\mu\text{eV}$. We discuss the origin of this tuning mechanism, which arises from an interplay between elastic deformation and the photoelastic effect in our micropillar. Finally, we exploit this effect to tune the quantum dot polarization opto-mechanically via the polarization-anisotropic Purcell effect. Our work paves the way for optomechanical and reversible tuning of the polarization and spin properties of light-matter coupled solid state systems.

[1]  V. A. Lukoshkin,et al.  Persistent Currents in Half-Moon Polariton Condensates , 2020 .

[2]  C. Schneider,et al.  Strain-Tunable Single-Photon Source Based on a Quantum Dot–Micropillar System , 2019, ACS Photonics.

[3]  H. Suchomel,et al.  Nonresonant spin selection methods and polarization control in exciton-polariton condensates , 2019, Physical Review B.

[4]  C. Schneider,et al.  Polarization-dependent light-matter coupling and highly indistinguishable resonant fluorescence photons from quantum dot-micropillar cavities with elliptical cross section , 2018, Physical Review B.

[5]  M. Bandres,et al.  Exciton-polariton topological insulator , 2018, Nature.

[6]  S. Brodbeck,et al.  Photon-Number-Resolved Measurement of an Exciton-Polariton Condensate. , 2018, Physical review letters.

[7]  H. Suchomel,et al.  Polariton condensation in $S$- and $P$-flatbands in a two-dimensional Lieb lattice , 2017, 1712.02166.

[8]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[9]  J. Stangl,et al.  Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators , 2017, 1710.07374.

[10]  Jake Iles-Smith,et al.  Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source , 2017, 1707.02886.

[11]  J. Stangl,et al.  Comparison of different bonding techniques for efficient strain transfer using piezoelectric actuators , 2017, Journal of applied physics.

[12]  C. Schneider,et al.  Deterministic implementation of a bright, on-demand single photon source with near-unity indistinguishability via quantum dot imaging. , 2016, Optica.

[13]  J. Martín-Sánchez,et al.  Wavelength-tunable sources of entangled photons interfaced with atomic vapours , 2016, Nature Communications.

[14]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[15]  Christian Schneider,et al.  Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. , 2015, Optics express.

[16]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[17]  O. Schmidt,et al.  High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots , 2015, Nature Communications.

[18]  M. Kamp,et al.  A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  I. Daruka,et al.  Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. , 2014, Physical review letters.

[20]  I. Sagnes,et al.  Spin-Orbit Coupling for Photons and Polaritons in Microstructures , 2014, 1406.4816.

[21]  B. Gerardot,et al.  Anomalous anticrossing of neutral exciton states in GaAs/AlGaAs quantum dots , 2014 .

[22]  Sheng-Di Lin,et al.  Polarized emission of quantum dots in microcavity and anisotropic Purcell factors. , 2014, Optics express.

[23]  B. Gerardot,et al.  Exciton fine-structure splitting of telecom-wavelength single quantum dots: Statistics and external strain tuning , 2013, 1303.1122.

[24]  S. Reitzenstein,et al.  On‐Chip Quantum Optics with Quantum Dot Microcavities , 2013, Advanced materials.

[25]  R. Trotta,et al.  Nanomembrane Quantum‐Light‐Emitting Diodes Integrated onto Piezoelectric Actuators , 2012, Advanced materials.

[26]  Manuel López-Amo,et al.  Photonic Crystal Fibers for Sensing Applications , 2012, J. Sensors.

[27]  O. Schmidt,et al.  Influence of the charge carrier tunneling processes on the recombination dynamics in single lateral quantum dot molecules , 2009, 0911.1221.

[28]  A. Lemaître,et al.  Continuous-wave versus time-resolved measurements of Purcell-factors for quantum dots in semiconductor microcavities , 2009, 0906.0750.

[29]  A Lemaître,et al.  Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. , 2008, Physical review letters.

[30]  J. O'Brien Optical Quantum Computing , 2007, Science.

[31]  Isabelle Sagnes,et al.  Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. , 2007, Physical review letters.

[32]  M. Hopkinson,et al.  Control of polarization and mode mapping of small volume high Q micropillars , 2007 .

[33]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[34]  J. Rarity,et al.  HIGH Q MODES IN ELLIPTICAL MICROCAVITY PILLARS , 2007 .

[35]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[36]  M. Hopkinson,et al.  Control of polarized single quantum dot emission in high-quality-factor microcavity pillars , 2006 .

[37]  Charles Santori,et al.  Single-photon generation with InAs quantum dots , 2004 .

[38]  G. Solomon,et al.  Enhanced single-photon emission from a quantum dot in a micropost microcavity , 2003, quant-ph/0307025.

[39]  S. Franchi,et al.  The effect of strain on tuning of light emission energy of InAs/InGaAs quantum-dot nanostructures , 2003 .

[40]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[41]  G. Solomon,et al.  Available online at www.sciencedirect.com , 2000 .

[42]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2000, Physical review letters.

[43]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[44]  A. Forchel,et al.  Weak and strong coupling of photons and excitons in photonic dots , 1998 .

[45]  Paul Anthony Kirkby,et al.  Photoelastic waveguides and their effect on stripe‐geometry GaAs/Ga1−xAlxAs lasers , 1979 .

[46]  R. Dixon Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners , 1967 .

[47]  Jean-Michel Gérard,et al.  InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics , 2001 .