KCTD15 is overexpressed in human childhood B-cell acute lymphoid leukemia

[1]  L. Di Marcotullio,et al.  KCTD15 inhibits the Hedgehog pathway in Medulloblastoma cells by increasing protein levels of the oncosuppressor KCASH2 , 2019, Oncogenesis.

[2]  L. Vitagliano,et al.  Molecular basis of the scalp-ear-nipple syndrome unraveled by the characterization of disease-causing KCTD1 mutants , 2019, Scientific Reports.

[3]  J. Rossi,et al.  Dual Mechanisms of Action of Self-Delivering, Anti-HIV-1 FANA Oligonucleotides as a Potential New Approach to HIV Therapy , 2019, Molecular therapy. Nucleic acids.

[4]  L. Soane,et al.  KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders , 2019, CNS neuroscience & therapeutics.

[5]  S. Erdin,et al.  Kctd13-deficient mice display short-term memory impairment and sex-dependent genetic interactions , 2018, Human molecular genetics.

[6]  A. Kruse,et al.  Structural basis for KCTD-mediated rapid desensitization of GABAB signaling , 2019, Nature.

[7]  A. Kruse,et al.  Structural basis for KCTD-mediated rapid desensitization of GABAB signaling , 2019, Nature.

[8]  L. Vitagliano,et al.  The essential player in adipogenesis GRP78 is a novel KCTD15 interactor. , 2018, International journal of biological macromolecules.

[9]  Summer B. Thyme,et al.  Kctd13 deletion reduces synaptic transmission via increased RhoA , 2017, Nature.

[10]  W. Carroll,et al.  New targeted therapies for relapsed pediatric acute lymphoblastic leukemia , 2017, Expert review of anticancer therapy.

[11]  Patricia Pérez-Vera,et al.  Alteraciones epigenéticas en leucemia linfoblástica aguda , 2017 .

[12]  P. Pérez-Vera,et al.  Epigenetic alterations in acute lymphoblastic leukemia , 2017 .

[13]  M. Krajinovic,et al.  Novel therapy for childhood acute lymphoblastic leukemia , 2017, Expert opinion on pharmacotherapy.

[14]  M. Raaben,et al.  Genetic wiring maps of single-cell protein states reveal an off-switch for GPCR signalling , 2017, Nature.

[15]  L. Boon,et al.  Comparative In Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines , 2016, Journal of immunology research.

[16]  F. Chaudhry,et al.  Pathogenic variants in KCTD7 perturb neuronal K+ fluxes and glutamine transport. , 2016, Brain : a journal of neurology.

[17]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[18]  I. Dawid,et al.  Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. , 2016, The International journal of developmental biology.

[19]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[20]  L. Vitagliano,et al.  Cullin 3 Recognition Is Not a Universal Property among KCTD Proteins , 2015, PloS one.

[21]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[22]  H. Schiöth,et al.  Obesity-Linked Homologues TfAP-2 and Twz Establish Meal Frequency in Drosophila melanogaster , 2014, PLoS genetics.

[23]  L. Vitagliano,et al.  Molecular recognition of Cullin3 by KCTDs: insights from experimental and computational investigations. , 2014, Biochimica et biophysica acta.

[24]  Xiang Hu,et al.  KCTD1 Suppresses Canonical Wnt Signaling Pathway by Enhancing β-catenin Degradation , 2014, PloS one.

[25]  Yaqian Xiang,et al.  The KCTD family of proteins: structure, function, disease relevance , 2013, Cell & Bioscience.

[26]  A. Baranova,et al.  Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development. , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  J. Shendure,et al.  Mutations in KCTD1 cause scalp-ear-nipple syndrome. , 2013, American journal of human genetics.

[28]  I. Dawid,et al.  Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2 , 2013, Proceedings of the National Academy of Sciences.

[29]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[30]  Michael Rehli,et al.  Genome‐wide methylation screen in low‐grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  A. Palotie,et al.  Novel mutations consolidate KCTD7 as a progressive myoclonus epilepsy gene , 2012, Journal of Medical Genetics.

[32]  A. Reymond,et al.  KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant , 2012, Nature.

[33]  I. Bekeredjian-Ding,et al.  Poke Weed Mitogen Requires Toll-Like Receptor Ligands for Proliferative Activity in Human and Murine B Lymphocytes , 2012, PloS one.

[34]  T. Meitinger,et al.  Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing , 2011, Leukemia.

[35]  S. Shurtleff,et al.  Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  B. Fakler,et al.  Native GABAB receptors are heteromultimers with a family of auxiliary subunits , 2010, Nature.

[37]  L. Vitagliano,et al.  Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation , 2010, Nature Cell Biology.

[38]  A. Baranova,et al.  Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region , 2009, Tumor Biology.

[39]  Joseph T. Glessner,et al.  The Role of Obesity‐associated Loci Identified in Genome‐wide Association Studies in the Determination of Pediatric BMI , 2009, Obesity.

[40]  Torsten Haferlach,et al.  An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase , 2008, British journal of haematology.

[41]  A. Gewirtz,et al.  2′-Deoxy-2′-fluoro-β-d-arabinonucleic acid (2′F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing , 2006, Nucleic acids research.

[42]  D. Schmidt-Arras,et al.  Flt3 receptor tyrosine kinase as a drug target in leukemia. , 2004, Current pharmaceutical design.

[43]  L. Ries,et al.  Cancer surveillance series: recent trends in childhood cancer incidence and mortality in the United States. , 1999, Journal of the National Cancer Institute.

[44]  Stuart H. Orkin,et al.  Transcription Factors and Hematopoietic Development (*) , 1995, The Journal of Biological Chemistry.

[45]  M. Haas,et al.  Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines , 1990, Molecular and cellular biology.

[46]  H. Soifer,et al.  Antisense 2'-Deoxy, 2'-Fluoroarabino Nucleic Acid (2'F-ANA) Oligonucleotides: In Vitro Gymnotic Silencers of Gene Expression Whose Potency Is Enhanced by Fatty Acids. , 2012, Molecular therapy. Nucleic acids.

[47]  Ellen Kampman,et al.  Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity , 2009, Nature Genetics.

[48]  F. Ragione,et al.  CELL CYCLE REGULATION AND HUMAN LEUKEMIAS : THE ROLE OF p 16 INK 4 GENE INACTIVATION IN THE DEVELOPMENT OF HUMAN ACUTE LYMPHOBLASTIC LEUKEMIA , 2005 .

[49]  F. Ragione,et al.  Cell cycle regulation and human leukemias: the role of p16INK4 gene inactivation in the development of human acute lymphoblastic leukemia. , 1995, Haematologica.

[50]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.