Passivity Based Control for DC-Microgrids with Constant Power Terminals in Island Mode Operation

: Este articulo presenta un Control Basado en Pasividad (CBP) de una microrred DC. El CBP se utiliza conmunmente en sistemas electricos como convertidores electronicos de potencia y maquinas electricas, pero hay pocas aplicaciones en microrredes que operan en forma aislada. El CBP se fundamenta en las propiedades de los sistemas pasivos y en el intercambio de energia entre subsistemas. La estrategia propuesta desarrolla control primario y secundario de la arquitectura de control jerarquico. Son necesarias comunicaciones locales y mediciones en los nodos donde se ubican convertidores dc/dc. Estudios de simulacion son realizados en MATLAB para validar el control en un sistema de prueba real compuesto por fuentes de energia renovables, cargas y unidades de almacenamiento de energia. Los resultados muestran que el control propuesto garantiza estabilidad y rapida respuesta del voltaje del bus dc bajo diferentes condiciones de operacion

[1]  Oriol Gomis-Bellmunt,et al.  Trends in Microgrid Control , 2014, IEEE Transactions on Smart Grid.

[2]  Yasser Abdel-Rady I. Mohamed,et al.  Modeling and Design of an Oscillatory Current-Sharing Control Strategy in DC Microgrids , 2015, IEEE Transactions on Industrial Electronics.

[3]  Dylan Dah-Chuan Lu,et al.  A Novel Stabilization Method of LC Input Filter With Constant Power Loads Without Load Performance Compromise in DC Microgrids , 2015, IEEE Transactions on Industrial Electronics.

[4]  Frank L. Lewis,et al.  Optimal, Nonlinear, and Distributed Designs of Droop Controls for DC Microgrids , 2014, IEEE Transactions on Smart Grid.

[5]  Romeo Ortega,et al.  Passivity-based PI control of switched power converters , 2003, IEEE Transactions on Control Systems Technology.

[6]  Faruk Kazi,et al.  Passivity Based Control of Complex Switched Mode FC-UC Hybrid Structure with BM Modeling , 2015 .

[7]  Jin Wang,et al.  Stability Analysis and Controller Design of DC Microgrids With Constant Power Loads , 2017, IEEE Transactions on Smart Grid.

[8]  Hiroaki Kakigano,et al.  DC Micro-grid for Super High Quality Distribution — System Configuration and Control of Distributed Generations and Energy Storage Devices — , 2006 .

[9]  A. Kwasinski,et al.  Stabilization of constant power loads in Dc-Dc converters using passivity-based control , 2007, INTELEC 07 - 29th International Telecommunications Energy Conference.

[10]  Ehab F. El-Saadany,et al.  Hybrid Passive-Overcurrent Relay for Detection of Faults in Low-Voltage DC Grids , 2017, IEEE Transactions on Smart Grid.

[11]  Lie Xu,et al.  DC microgrid with variable generations and energy storage , 2011 .

[12]  Timothy C. Green,et al.  Dynamic Stability of a Microgrid With an Active Load , 2013, IEEE Transactions on Power Electronics.

[13]  Xiaoyu Ma,et al.  Study on passivity-based control of voltage source PWM DC/AC inverter , 2011, Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology.

[14]  Faruk Kazi,et al.  Fuel cell and ultra-capacitor based hybrid energy control using IDA-PBC methodology , 2015, 2015 International Conference on Industrial Instrumentation and Control (ICIC).

[15]  Chengyong Zhao,et al.  Passivity-based control of HVDC transmission system based on modular multilevel converter under unbalanced grid conditions , 2013 .

[16]  A. Miraoui,et al.  Passivity-Based Control of Hybrid Power Sources using Fuel Cell, Supercapacitors, and Batteries on the DC link for Energy Traction System , 2007, 2007 IEEE International Electric Machines & Drives Conference.

[17]  Romeo Ortega,et al.  Interconnection and Damping Assignment Passivity-Based Control: A Survey , 2004, Eur. J. Control.

[18]  Ronnie Belmans,et al.  Analysis of Power Sharing and Voltage Deviations in Droop-Controlled DC Grids , 2013, IEEE Transactions on Power Systems.

[19]  P.P. Barker,et al.  Determining the impact of distributed generation on power systems. I. Radial distribution systems , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[20]  Daniel J. Pagano,et al.  Nonlinear control applied to a dc-dc power converter and the load sharing problem in a dc microgrid , 2014 .

[21]  Alexis Kwasinski,et al.  Decentralized control of a vehicular microgrid with constant power loads , 2014, 2014 IEEE International Electric Vehicle Conference (IEVC).

[22]  M. Becherif,et al.  Fuzzy logic and passivity based control applied to hybrid DC power source using fuel cell and battery , 2015, 2015 4th International Conference on Systems and Control (ICSC).

[23]  Mohsen Kalantar,et al.  Passivity-based control of PEM fuel cell/battery hybrid power source , 2011, 2011 IEEE Energy Conversion Congress and Exposition.

[24]  Wei Qiao,et al.  An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load , 2014 .

[25]  Carlos Bordons,et al.  Gestión Óptima de la Energía en Microrredes con Generación Renovable , 2015 .

[26]  Serge Pierfederici,et al.  Stabilization of a distributed DC power system by shaping loads input impedance: Feedforward stabilization , 2014, IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society.

[27]  M. Becherif,et al.  Passivity Based Control and Fuzzy Logic Estimation applied to DC hybrid power source using Fuel Cell and supercapacitor , 2013, 3rd International Conference on Systems and Control.

[28]  A. Kwasinski,et al.  Passivity-Based Control of Buck Converters with Constant-Power Loads , 2007, 2007 IEEE Power Electronics Specialists Conference.

[29]  Frank L. Lewis,et al.  Distributed Cooperative Control of DC Microgrids , 2015, IEEE Transactions on Power Electronics.

[30]  P. Lefranc,et al.  Energy concept-based nonlinear stabilization and control for Modular Multilevel Converters for voltage oscillation reduction , 2014, 2014 16th European Conference on Power Electronics and Applications.

[31]  J. Jia,et al.  A review of control strategies for DC micro-grid , 2013, 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP).

[32]  Yunjie Gu,et al.  Passivity-Based Control of DC Microgrid for Self-Disciplined Stabilization , 2015, IEEE Transactions on Power Systems.

[33]  Tomonobu Senjyu,et al.  A distributed DC power system in an isolated island , 2009, 2009 IEEE International Symposium on Industrial Electronics.

[34]  Juan C. Vasquez,et al.  DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques , 2016, IEEE Transactions on Power Electronics.

[35]  Dushan Boroyevich,et al.  Future electronic power distribution systems a contemplative view , 2010, 2010 12th International Conference on Optimization of Electrical and Electronic Equipment.

[36]  A Kwasinski,et al.  Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads , 2011, IEEE Transactions on Power Electronics.

[37]  Juan C. Vasquez,et al.  Advanced LVDC Electrical Power Architectures and Microgrids: A step toward a new generation of power distribution networks. , 2014, IEEE Electrification Magazine.

[38]  Pedro Rodriguez,et al.  Design considerations for primary control in multi-terminal VSC-HVDC grids , 2015 .

[39]  Florian Dörfler,et al.  Kron Reduction of Graphs With Applications to Electrical Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[41]  Juan C. Vasquez,et al.  Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability , 2014, IEEE Transactions on Power Electronics.