An improved worst-case to average-case connection for lattice problems
暂无分享,去创建一个
[1] DyerMartin,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991 .
[2] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[3] C. P. Schnorr,et al. A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..
[4] Oded Goldreich,et al. Public-Key Cryptosystems from Lattice Reduction Problems , 1996, CRYPTO.
[5] Miklós Ajtai,et al. Generating Hard Instances of Lattice Problems , 1996, Electron. Colloquium Comput. Complex..
[6] K. Ball. Cube slicing in ⁿ , 1986 .
[7] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[8] Miklós Simonovits,et al. The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[9] C. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .
[10] Cynthia Dwork,et al. A public-key cryptosystem with worst-case/average-case equivalence , 1997, STOC '97.
[11] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[12] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[13] A. Odlyzko,et al. Disproof of the Mertens conjecture. , 1984 .
[14] G. L. Dirichlet. Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .
[15] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[16] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[17] Jeffrey C. Lagarias,et al. Solving low density subset sum problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[18] Jacques Stern,et al. The hardness of approximate optima in lattices, codes, and systems of linear equations , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[19] Martin E. Dyer,et al. A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.
[20] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[21] Kenneth J. Giuliani. Factoring Polynomials with Rational Coeecients , 1998 .
[22] Oded Goldreich,et al. Collision-Free Hashing from Lattice Problems , 1996, Electron. Colloquium Comput. Complex..
[23] Jeffrey C. Lagarias. The computational complexity of simultaneous Diophantine approximation problems , 1982, FOCS 1982.
[24] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..