Eight‐node shell element based on incompatible modes

This paper concerns the shell element formulation used for linear analysis. Introduction of hierarchical incompatible modes into the ordinary 8-node solid element is very effective to obtain the rational deflection–rotation relationship. An efficient revision scheme without using numerical volume integration is developed to ensure the satisfaction of the patch test. A lot of numerical tests are carried out for the validation of the present element. Numerical results show that the element can give satisfactory accuracy and convergence, especially for moderately thick shells. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  T. Pian,et al.  CONSISTENCY CONDITION AND CONVERGENCE CRITERIA OF INCOMPATIBLE ELEMENTS: GENERAL FORMULATION OF INCOMPATIBLE FUNCTIONS AND ITS APPLICATION , 1987 .

[2]  R. Hauptmann,et al.  A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .

[3]  X. G. Tan,et al.  Optimal solid shells for non-linear analyses of multilayer composites. II. Dynamics , 2003 .

[4]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[5]  Fan Zhang,et al.  The indenter tip radius effect in micro- and nanoindentation hardness experiments. , 2006 .

[6]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[7]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[8]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[9]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .

[10]  Christian Miehe,et al.  A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains , 1998 .

[11]  Manfred Bischoff,et al.  A generalization of the method of incompatible modes , 2007 .

[12]  A. K. Rao,et al.  Flexure of Thick Rectangular Plates , 1973 .

[13]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[14]  Ekkehard Ramm,et al.  A class of equivalent enhanced assumed strain and hybrid stress finite elements , 1999 .

[15]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[16]  K. Y. Sze,et al.  A hybrid stress ANS solid‐shell element and its generalization for smart structure modelling. Part I—solid‐shell element formulation , 2000 .

[17]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[18]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[19]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[20]  Chang-Koon Choi,et al.  Direct modification for non‐conforming elements with drilling DOF , 2002 .

[21]  Edward L. Wilson,et al.  Use of incompatible displacement modes for the calculation of element stiffnesses or stresses , 1990 .

[22]  E. Ramm,et al.  A further study on incompatible models: revise-stiffness approach and completeness of trial functions , 2001 .

[23]  A Mixed Finite Element for Plate Bending with Eight Enhanced Strain Modes , 2001 .

[24]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[25]  O. Zienkiewicz,et al.  The finite element patch test revisited a computer test for convergence, validation and error estimates , 1997 .

[26]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[27]  Sven Klinkel,et al.  A geometrical non‐linear brick element based on the EAS‐method , 1997 .

[28]  K. D. Kim,et al.  A resultant 8-node solid-shell element for geometrically nonlinear analysis , 2005 .