Finite- and fixed-time convergent algorithms: Design and convergence time estimation

Abstract This paper presents a review of finite- and fixed-time convergent algorithms for dynamic systems of various dimensions and relative degrees, with or without disturbances. The review mainly focuses on finite- and fixed-time convergent algorithms, which provide explicit and easily computable upper estimates for the corresponding convergence times. The finite- and fixed-time convergent algorithms are classified according to their actions and structural properties: regulators, observers (differentiators), controllers; discontinuous and continuous, non-smooth and smooth, non-adaptive and adaptive. Some fixed-time convergent algorithms are illustrated by simulation examples displaying typical time histories of the state/estimate trajectories in each case.

[1]  Vadim I. Utkin,et al.  On Convergence Time and Disturbance Rejection of Super-Twisting Control , 2013, IEEE Transactions on Automatic Control.

[2]  Michael Basin,et al.  Continuous Fixed‐Time Convergent Super‐Twisting Algorithm in Case of Unknown State and Disturbance Initial Conditions , 2019 .

[3]  Alexander G. Loukianov,et al.  A class of predefined-time stable dynamical systems , 2018 .

[4]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[5]  Christopher Edwards,et al.  Adaptive continuous higher order sliding mode control , 2016, Autom..

[6]  Yuri B. Shtessel,et al.  Continuous Finite-Time Higher Order Output Regulators for Systems With Unmatched Unbounded Disturbances , 2016, IEEE Transactions on Industrial Electronics.

[7]  Alexander S. Poznyak,et al.  Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization , 2009, Autom..

[8]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..

[9]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[11]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[12]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[13]  Yuri B. Shtessel,et al.  Continuous finite- and fixed-time high-order regulators , 2016, J. Frankl. Inst..

[14]  M. Basin,et al.  Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation , 2017 .

[15]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[16]  Michael V. Basin,et al.  Continuous Fixed-Time Controller Design for Mechatronic Systems With Incomplete Measurements , 2018, IEEE/ASME Transactions on Mechatronics.

[17]  Xinghuo Yu,et al.  Fixed-time converging terminal surface with non-singular control design for second-order systems , 2017 .

[18]  Yuri B. Shtessel,et al.  Continuous fixed-time convergent regulator for dynamic systems with unbounded disturbances , 2018, J. Frankl. Inst..

[19]  Martin Horn,et al.  A Novel Method to Estimate the Reaching Time of the Super-Twisting Algorithm , 2018, IEEE Transactions on Automatic Control.

[20]  Yuri B. Shtessel,et al.  New methodologies for adaptive sliding mode control , 2010, Int. J. Control.

[21]  Giorgio Bartolini,et al.  A survey of applications of second-order sliding mode control to mechanical systems , 2003 .

[22]  Yuri B. Shtessel,et al.  A novel adaptive-gain supertwisting sliding mode controller: Methodology and application , 2012, Autom..

[23]  Michael Basin,et al.  Continuous Fixed‐Time Controller Design for Dynamic Systems with Unmeasurable States Subject to Unbounded Disturbances , 2018, Asian Journal of Control.

[24]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[25]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[26]  J. Moreno Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms , 2011 .

[27]  Yuri B. Shtessel,et al.  Finite- and fixed-time differentiators utilising HOSM techniques , 2017 .

[28]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[29]  Leonid M. Fridman,et al.  Stability notions and Lyapunov functions for sliding mode control systems , 2014, J. Frankl. Inst..

[30]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[31]  Christopher Edwards,et al.  A multivariable super-twisting sliding mode approach , 2014, Autom..

[32]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[33]  Yuri B. Shtessel,et al.  Adaptive uniform finite-/fixed-time convergent second-order sliding-mode control , 2016, Int. J. Control.

[34]  Alexander S. Poznyak,et al.  Reaching Time Estimation for “Super-Twisting” Second Order Sliding Mode Controller via Lyapunov Function Designing , 2009, IEEE Transactions on Automatic Control.

[35]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[36]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[37]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[38]  A. Levant Universal SISO sliding-mode controllers with finite-time convergence , 2001 .

[39]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[40]  V. Utkin,et al.  About second order sliding mode control, relative degree, finite-time convergence and disturbance rejection , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[41]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[42]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.