Hybridization methods for the analysis of nonlinear systems

In this article, we describe some recent results on the hybridization methods for the analysis of nonlinear systems. The main idea of our hybridization approach is to apply the hybrid systems methodology as a systematic approximation method. More concretely, we partition the state space of a complex system into regions that only intersect on their boundaries, and then approximate its dynamics in each region by a simpler one. Then, the resulting hybrid system, which we call a hybridization, is used to yield approximate analysis results for the original system. We also prove important properties of the hybridization, and propose two effective hybridization construction methods, which allow approximating the original nonlinear system with a good convergence rate.

[1]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[2]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[3]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[4]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[5]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[6]  Aude Maignan,et al.  Hybrid computation , 2001, ISSAC '01.

[7]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[8]  Pravin Varaiya,et al.  Verification of Hybrid Systems Using Abstractions , 1996, Hybrid Systems.

[9]  Gerardo Lafferriere,et al.  Symbolic Reachability Computation for Families of Linear Vector Fields , 2001, J. Symb. Comput..

[10]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[11]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[12]  Alberto Bemporad,et al.  HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems , 2004, IEEE Transactions on Control Systems Technology.

[13]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[14]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2006, Theor. Comput. Sci..

[15]  Ian M. Mitchell,et al.  Reachability Analysis Using Polygonal Projections , 1999, HSCC.

[16]  Olivier Bournez,et al.  Approximate Reachability Analysis of Piecewise-Linear Dynamical Systems , 2000, HSCC.

[17]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[18]  Ashish Tiwari,et al.  Series of Abstractions for Hybrid Automata , 2002, HSCC.

[19]  A. Papachristodoulou,et al.  Analysis of switched and hybrid systems - beyond piecewise quadratic methods , 2003, Proceedings of the 2003 American Control Conference, 2003..

[20]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[21]  Jean-Guillaume Dumas,et al.  Algorithms for Hybrid Optimal Control , 2005, ArXiv.

[22]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[23]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.

[24]  Paulo Tabuada,et al.  Model Checking LTL over Controllable Linear Systems Is Decidable , 2003, HSCC.

[25]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[26]  O. Stursberg,et al.  Approximating switched continuous systems by rectangular automata , 1999, 1999 European Control Conference (ECC).

[27]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[28]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[29]  Amir Pnueli,et al.  A really abstract concurrent model and its temporal logic , 1986, POPL '86.

[30]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[31]  Nicolas Markey,et al.  Non-deterministic Temporal Logics for General Flow Systems , 2004, HSCC.

[32]  Rajeev Alur,et al.  Counterexample-guided predicate abstraction of hybrid systems , 2003, Theor. Comput. Sci..

[33]  Goran Frehse PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech , 2005, HSCC.

[34]  Insup Lee,et al.  R-Charon, a Modeling Language for Reconfigurable Hybrid Systems , 2006, HSCC.

[35]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[36]  P. Saint-Pierre Approximation of viability kernels and capture basins for hybrid systems , 2001, 2001 European Control Conference (ECC).

[37]  Lars Hedrich,et al.  On Discrete Modeling and Model Checking for Nonlinear Analog Systems , 2002, CAV.

[38]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[39]  Alexandre M. Bayen,et al.  Computational techniques for the verification of hybrid systems , 2003, Proc. IEEE.

[40]  Antoine Girard,et al.  Approximate solutions of ODEs using piecewise linear vector fields , 2002 .

[41]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[42]  Ian M. Mitchell,et al.  A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems , 2005, HSCC.

[43]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[44]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[45]  Ashish Tiwari,et al.  Nonlinear Systems: Approximating Reach Sets , 2004, HSCC.

[46]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[47]  Oded Maler,et al.  Verification of Analog and Mixed-Signal Circuits Using Hybrid System Techniques , 2004, FMCAD.

[48]  Calin Belta,et al.  Reachability analysis of multi-affine systems , 2006, HSCC.

[49]  Vijay Kumar,et al.  Hierarchical modeling and analysis of embedded systems , 2003, Proc. IEEE.

[50]  Eugene Asarin,et al.  Abstraction by Projection and Application to Multi-affine Systems , 2004, HSCC.

[51]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[52]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[53]  Thao Dang Approximate Reachability Computation for Polynomial Systems , 2006, HSCC.

[54]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[55]  Oded Maler,et al.  Reachability Analysis via Face Lifting , 1998, HSCC.

[56]  Bruce H. Krogh,et al.  Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations , 1999, HSCC.

[57]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[58]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[59]  Hirokazu Anai,et al.  Reach Set Computations Using Real Quantifier Elimination , 2001, HSCC.

[60]  Jan H. van Schuppen,et al.  Control of Piecewise-Linear Hybrid Systems on Simplices and Rectangles , 2001, HSCC.

[61]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[62]  Harold W. Kuhn,et al.  Some Combinatorial Lemmas in Topology , 1960, IBM J. Res. Dev..

[63]  John H. Hubbard,et al.  Systems of Differential Equations , 1995 .

[64]  Jean-Pierre Aubin,et al.  Impulse differential inclusions: a viability approach to hybrid systems , 2002, IEEE Trans. Autom. Control..

[65]  Joël Ouaknine,et al.  Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems , 2003, Int. J. Found. Comput. Sci..