On the Stability of the Notion of Non-Characteristic Point and Blow-Up Profile for Semilinear Wave Equations

[1]  R. Cote,et al.  Construction of a Multisoliton Blowup Solution to the Semilinear Wave Equation in One Space Dimension , 2013 .

[2]  F. Merle,et al.  Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions , 2013, 1309.7756.

[3]  H. Zaag,et al.  Blow-up results for semilinear wave equations in the super-conformal case , 2013, 1301.0473.

[4]  H. Zaag,et al.  Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations , 2013, 1301.0471.

[5]  Birgit Schorkhuber,et al.  Stable blow up dynamics for energy supercritical wave equations , 2012, 1207.7046.

[6]  R. Killip,et al.  Blowup behaviour for the nonlinear Klein–Gordon equation , 2012, 1203.4886.

[7]  Birgit Schorkhuber,et al.  Stable self-similar blow up for energy subcritical wave equations , 2012, 1201.4337.

[8]  K. Nakanishi,et al.  GLOBAL DYNAMICS OF THE NONRADIAL ENERGY-CRITICAL WAVE EQUATION ABOVE THE GROUND STATE ENERGY , 2011, 1112.5663.

[9]  F. Merle,et al.  Threshold and generic type I behaviors for a supercritical nonlinear heat equation , 2011 .

[10]  R. Killip,et al.  Smooth solutions to the nonlinear wave equation can blow up on Cantor sets , 2011, 1103.5257.

[11]  F. Merle,et al.  Blow-up behavior outside the origin for a semilinear wave equation in the radial case , 2011, 1102.1328.

[12]  T. Chmaj,et al.  Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation , 2010, 1012.1033.

[13]  K. Nakanishi,et al.  Global dynamics away from the ground state for the energy-critical nonlinear wave equation , 2010, 1010.3799.

[14]  Pierre Raphael,et al.  Smooth type II blow up solutions to the four dimensional energy critical wave equation , 2010, 1010.1768.

[15]  H. Zaag,et al.  A Lyapunov functional and blow-up results for a class of perturbations for semilinear wave equations in the critical case , 2010, 1005.3771.

[16]  H. Zaag,et al.  A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations , 2010, 1002.2328.

[17]  R. Killip,et al.  The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions , 2010, 1002.1756.

[18]  A. Wasserman,et al.  Self-similar solutions of the cubic wave equation , 2009, 0905.3834.

[19]  W. Schlag,et al.  On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background , 2009, 0911.3179.

[20]  F. Merle,et al.  Classification of type I and type II behaviors for a supercritical nonlinear heat equation , 2009 .

[21]  Anil Zenginoglu,et al.  Universality of global dynamics for the cubic wave equation , 2008, Nonlinearity.

[22]  F. Merle,et al.  Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension , 2008, 0811.4068.

[23]  F. Merle,et al.  Openness of the Set of Non-characteristic Points and Regularity of the Blow-up Curve for the 1 D Semilinear Wave Equation , 2008 .

[24]  F. Merle,et al.  Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension , 2007 .

[25]  P. Bizoń,et al.  Self-similar solutions of semilinear wave equations with a focusing nonlinearity , 2007, math/0702156.

[26]  D. Tataru,et al.  SLOW BLOW-UP SOLUTIONS FOR THE H(R) CRITICAL FOCUSING SEMI-LINEAR WAVE EQUATION , 2007 .

[27]  F. Merle,et al.  Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation , 2006, math/0610801.

[28]  F. Merle,et al.  Determination of the blow-up rate for a critical semilinear wave equation , 2005 .

[29]  T. Chmaj,et al.  On blowup for semilinear wave equations with a focusing nonlinearity , 2003, math-ph/0311019.

[30]  F. Merle,et al.  Determination of the blow-up rate for the semilinear wave equation , 2003 .

[31]  P. Bizoń Threshold Behavior for Nonlinear Wave Equations , 2001 .

[32]  F. Merle,et al.  Optimal bounds on positive blow-up solutions for a semilinear wave equation , 2001 .

[33]  Petru Mironescu,et al.  Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces , 2001 .

[34]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[35]  F. Merle,et al.  Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view , 2000 .

[36]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[37]  Frédérique Oru Rôle des oscillations dans quelques problèmes d'analyse non-linéaire , 1998 .

[38]  Hans Lindblad,et al.  On Existence and Scattering with Minimal Regularity for Semilinear Wave Equations , 1995 .

[39]  Serge Alinhac,et al.  Blowup for Nonlinear Hyperbolic Equations , 1995 .

[40]  M. Herrero,et al.  Explosion de solutions d'équations paraboliques semilinéaires supercritiques , 1994 .

[41]  Avner Friedman,et al.  The blow-up boundary for nonlinear wave equations , 1986 .

[42]  Avner Friedman,et al.  Differentiability of the blow-up curve for one dimensional nonlinear wave equations , 1985 .

[43]  Howard A. Levine,et al.  Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .