Estimation of daily suspended sediments using support vector machines
暂无分享,去创建一个
[1] H. K. Cigizoglu,et al. ESTIMATION AND FORECASTING OF DAILY SUSPENDED SEDIMENT DATA BY MULTI-LAYER PERCEPTRONS , 2004 .
[2] O. Ks. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation , 2004 .
[3] Gokmen Tayfur,et al. Artificial neural networks for estimating daily total suspended sediment in natural streams , 2006 .
[4] N. Asselman. Fitting and interpretation of sediment rating curves , 2000 .
[5] D. Walling. Assessing the accuracy of suspended sediment rating curves for a small basin , 1977 .
[6] Ozgur Kisi,et al. Methods to improve the neural network performance in suspended sediment estimation , 2006 .
[7] Alexander J. Smola,et al. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.
[8] R. Ferguson. River Loads Underestimated by Rating Curves , 1986 .
[9] Junbin Gao,et al. A Probabilistic Framework for SVM Regression and Error Bar Estimation , 2002, Machine Learning.
[10] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[11] J. Nash,et al. River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .
[12] B. E. Peters-Kümmerly. Untersuchungen über Zusammensetzung und Transport von Schwebstoffen in einigen Schweizer Flüssen , 1973 .
[13] Alexander J. Smola,et al. Regression estimation with support vector learning machines , 1996 .
[14] G. Tayfur. Artificial neural networks for sheet sediment transport , 2002 .
[15] Robert M. Summers,et al. The validity of a simple statistical model for estimating fluvial constituent loads: An Empirical study involving nutrient loads entering Chesapeake Bay , 1992 .
[16] Ozgur Kisi,et al. Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones , 2005 .
[17] R. Ferguson. Accuracy and precision of methods for estimating river loads , 1987 .
[18] Ozgur Kisi,et al. River suspended sediment modelling using a fuzzy logic approach , 2006 .
[19] Annie Poulin,et al. Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Quebec, Canada) , 2005 .
[20] Nitin Muttil,et al. Discharge Rating Curve Extension – A New Approach , 2005 .
[21] A. Durgunoğlu,et al. Developing accurate and reliable stream sediment yields , 1989 .
[22] MohammadSajjad Khan,et al. Application of Support Vector Machine in Lake Water Level Prediction , 2006 .
[23] V. Singh,et al. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces , 2003 .
[24] Özgür Kişi,et al. Daily suspended sediment modelling using a fuzzy differential evolution approach / Modélisation journalière des matières en suspension par une approche d’évolution différentielle floue , 2004 .
[25] R. Brereton,et al. Support vector machines for classification and regression. , 2010, The Analyst.
[26] Özgür Kişi,et al. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation / Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme d’apprentissage de Levenberg-Marquardt , 2004 .