Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands

[1]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[2]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses , 2011 .

[3]  Mark W. Verbrugge,et al.  Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands , 2011 .

[4]  R. Raj,et al.  Silicon-oxycarbide based thin film anodes for lithium ion batteries , 2011 .

[5]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[6]  Ting Zhu,et al.  Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. , 2011, ACS nano.

[7]  Yang-Tse Cheng,et al.  Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes , 2011 .

[8]  Huajian Gao,et al.  Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries , 2011 .

[9]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[10]  Zhigang Suo,et al.  Fracture of electrodes in lithium-ion batteries caused by fast charging , 2010 .

[11]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[12]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[13]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[14]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[15]  Qunyang Li,et al.  Micromechanics of friction: effects of nanometre-scale roughness , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[17]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[18]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[19]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[20]  H. Moon,et al.  Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries , 2004 .

[21]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[22]  L. Freund,et al.  Thin Film Materials: Stress, Defect Formation and Surface Evolution , 2004 .

[23]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[24]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[25]  J. Hutchinson,et al.  Influence of substrate compliance on buckling delamination of thin films , 2002 .

[26]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[27]  H. Lee,et al.  Stress effect on cycle properties of the silicon thin-film anode , 2001 .

[28]  John W. Hutchinson,et al.  Edge effects in thin film delamination , 2001 .

[29]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[30]  T. Brousse,et al.  Amorphous silicon as a possible anode material for Li-ion batteries , 1999 .

[31]  Effects of Morphology on the Decohesion of Compressed Thin Films , 1998 .

[32]  A. Evans,et al.  Convergent debonding of films and fibers , 1997 .