On eigenvalues induced by a cone constraint

Abstract Let A be an n×n real matrix, and K⊂ R n be a closed convex cone. The spectrum of A relative to K, denoted by σ(A,K), is the set of all λ∈ R for which the linear complementarity problem x∈K, Ax−λx∈K + , 〈x,Ax−λx〉=0 admitsa nonzero solution x∈ R n . The notation K+ stands for the (positive) dual cone of K. The purpose of this work is to study the main properties of the mapping σ(·,K), and discuss some structural differences existing between the polyhedral case (i.e. K is finitely generated) and the nonpolyhedral case.

[1]  Pavol Quittner Spectral analysis of variational inequalities , 1986 .

[2]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[3]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[4]  M. Kučera A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory , 1979 .

[5]  H. Wolkowicz,et al.  Exponential nonnegativity on the ice cream cone , 1991 .

[6]  Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones , 2004 .

[7]  A. Seeger Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .

[8]  Hans Schneider,et al.  Positive operators on the n-dimensional ice cream cone , 1975 .

[9]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[10]  Alberto Seeger,et al.  Existence de valeurs propres pour les systèmes multivoques : Résultats anciens et nouveaux , 2001 .

[11]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[12]  A. Brøndsted An Introduction to Convex Polytopes , 1982 .

[13]  G. Ziegler Lectures on Polytopes , 1994 .

[14]  M. Kučera A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues , 1982 .

[15]  Roger J.-B. Wets,et al.  Continuity of some convex-cone-valued mappings , 1967 .

[16]  R. Riddell Eigenvalue problems for nonlinear elliptic variational inequalities on a cone , 1977 .

[17]  G. P. Barker Theory of cones , 1981 .