On eigenvalues induced by a cone constraint
暂无分享,去创建一个
[1] Pavol Quittner. Spectral analysis of variational inequalities , 1986 .
[2] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[3] Gerald Beer,et al. Topologies on Closed and Closed Convex Sets , 1993 .
[4] M. Kučera. A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory , 1979 .
[5] H. Wolkowicz,et al. Exponential nonnegativity on the ice cream cone , 1991 .
[6] Pointedness, Connectedness, and Convergence Results in the Space of Closed Convex Cones , 2004 .
[7] A. Seeger. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .
[8] Hans Schneider,et al. Positive operators on the n-dimensional ice cream cone , 1975 .
[9] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[10] Alberto Seeger,et al. Existence de valeurs propres pour les systèmes multivoques : Résultats anciens et nouveaux , 2001 .
[11] A. Ioffe,et al. Theory of extremal problems , 1979 .
[12] A. Brøndsted. An Introduction to Convex Polytopes , 1982 .
[13] G. Ziegler. Lectures on Polytopes , 1994 .
[14] M. Kučera. A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues , 1982 .
[15] Roger J.-B. Wets,et al. Continuity of some convex-cone-valued mappings , 1967 .
[16] R. Riddell. Eigenvalue problems for nonlinear elliptic variational inequalities on a cone , 1977 .
[17] G. P. Barker. Theory of cones , 1981 .