A capacitorless double gate DRAM technology for sub-100-nm embedded and stand-alone memory applications

A capacitorless, asymmetric double gate DRAM (DG-DRAM) technology is presented. Its double gate, thin body structure reduces dopant fluctuation effects, off-state leakage, and disturb problems. The cell's large body coefficient amplifies small gains of body potential into increased drain current. Experimental measurements of DG-DRAM were made using recessed channel SOI n-MOSFETs. No significant degradation in programming, retention, and read behavior was observed after 10/sup 11/ cycles. Cell geometry, operating voltages, and material quality should be considered for DG-DRAM in embedded and stand-alone applications. The feasibility of DG-DRAM in future high density CMOS memories depends on issues such as manufacturability, soft error reliability, and tail bit distribution.

[1]  T. Ohsawa,et al.  Memory design using one-transistor gain cell on SOI , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[2]  Amir M. Sodagar,et al.  High-speed current-mode sense amplifier , 1994 .

[3]  Kunihiko Yamaguchi,et al.  High-current, small parasitic capacitance MOS FET on a poly-Si interlayered (PSI: /spl Psi/) SOI wafer , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.

[4]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[5]  F. Assaderaghi,et al.  Recessed-channel structure for fabricating ultrathin SOI MOSFET with low series resistance , 1994, IEEE Electron Device Letters.

[6]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[7]  Richard C. Jaeger,et al.  A high-speed clamped bit-line current-mode sense amplifier , 1991 .

[8]  Kinam Kim,et al.  DRAM technology perspective for gigabit era , 1998 .

[9]  Chang-Gyu Hwang,et al.  Semiconductor memories for IT era , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[10]  Chenming Hu,et al.  A capacitorless double-gate DRAM cell design for high density applications , 2002, Digest. International Electron Devices Meeting,.

[11]  M. Bohr Nanotechnology goals and challenges for electronic applications , 2002 .

[12]  D. E. Russell,et al.  Cosmic ray neutron induced upsets as a major contributor to the soft error rate of current and future generation DRAMs , 1996, Proceedings of International Reliability Physics Symposium.

[13]  Chenming Hu,et al.  A capacitorless double-gate DRAM cell , 2002, IEEE Electron Device Letters.

[14]  Chenming Hu,et al.  A capacitorless DRAM cell on SOI substrate , 1993, Proceedings of IEEE International Electron Devices Meeting.

[15]  G. G. Shahidi SOI technology for the GHz era , 2002, IBM J. Res. Dev..

[16]  Sorin Cristoloveanu,et al.  Generation-recombination transient effects in partially depleted SOI transistors: systematic experiments and simulations , 1998 .

[17]  Jean-Michel Sallese,et al.  A SOI capacitor-less 1T-DRAM concept , 2001, 2001 IEEE International SOI Conference. Proceedings (Cat. No.01CH37207).

[18]  Keith A. Jenkins,et al.  Body charge related transient effects in floating body SOI NMOSFETs , 1995, Proceedings of International Electron Devices Meeting.

[19]  Fu-Chieh Hsu,et al.  The ideal SoC memory: 1T-SRAM/sup TM/ , 2000, Proceedings of 13th Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541).

[20]  Yuichi Kado,et al.  Hot-carrier-induced degradation in ultra-thin, fully-depleted, deep-submicron nMOS and pMOS SOI transistors , 1994, Proceedings of 1994 IEEE International Reliability Physics Symposium.

[21]  Dimitri A. Antoniadis,et al.  Back-gated CMOS on SOIAS for dynamic threshold voltage control , 1997 .

[22]  Mansun Chan,et al.  Body self bias in fully depleted and non-fully depleted SOI devices , 1994, Proceedings. IEEE International SOI Conference.