Broadband full-color multichannel hologram with geometric metasurface.

Due to the abilities of manipulating the wavefront of light with well-controlled amplitude, and phase and polarization, optical metasurfaces are very suitable for optical holography, enabling applications with multiple functionalities and high data capacity. Here, we demonstrate encoding two- and three-dimensional full-color holographic images by an ultrathin metasurface hologram whose unit cells are subwavelength nanoslits with spatially varying orientations. We further show that it is possible to achieve full-color holographic multiplexing with such kind of geometric metasurfaces, realized by a synthetic spectrum holographic algorithm. Our results provide an efficient way to design multi-color optical display elements that are ready for fabrication.

[1]  Zeyu Zhao,et al.  Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection , 2015, Scientific Reports.

[2]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[3]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[4]  Yang Cao,et al.  Highly efficient beam steering with a transparent metasurface. , 2013, Optics express.

[5]  Xin-Ke Wang,et al.  Wavelength de-multiplexing metasurface hologram , 2016, Scientific Reports.

[6]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[7]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[8]  Y. Kivshar,et al.  Experimental demonstration of topological effects in bianisotropic metamaterials , 2016, Scientific Reports.

[9]  Yuri S. Kivshar,et al.  Grayscale transparent metasurface holograms , 2016 .

[10]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[11]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[12]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[13]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[14]  Andrea Alù,et al.  Optical metasurfaces with robust angular response on flexible substrates , 2011 .

[15]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[16]  Xiaodong Yang,et al.  Metasurface Holograms for Holographic Imaging , 2017 .

[17]  Xiaodong Yang,et al.  Full-Color Plasmonic Metasurface Holograms. , 2016, ACS nano.

[18]  P. Genevet,et al.  Holographic optical metasurfaces: a review of current progress , 2015, Reports on progress in physics. Physical Society.

[19]  Prashanth Gopalan,et al.  Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces. , 2015, Nano letters.

[20]  E. Narimanov,et al.  Bulk photonic metamaterial with hyperbolic dispersion , 2008, 0809.1028.

[21]  P. Belov,et al.  Self-complementary metasurfaces for linear-to-circular polarization conversion , 2015 .

[22]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[23]  G. Eleftheriades,et al.  Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation , 2014, IEEE Transactions on Antennas and Propagation.

[24]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[25]  Yuri S. Kivshar,et al.  Hyperbolic transmission-line metamaterials , 2012 .

[26]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[27]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[28]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[29]  T. Cui,et al.  Broadband All‐Dielectric Magnifying Lens for Far‐Field High‐Resolution Imaging , 2013, Advanced materials.

[30]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[31]  Hui Zhang,et al.  Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms , 2017, Scientific Reports.

[32]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[33]  Yongtian Wang,et al.  Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces , 2015, Advanced materials.

[34]  D. Gabor A New Microscopic Principle , 1948, Nature.

[35]  Le-Wei Li,et al.  A novel flat lens horn antenna designed based on zero refraction principle of metamaterials , 2007 .

[36]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[37]  Young-Bum Kim,et al.  Corrigendum: Clusterin and LRP2 are critical components of the hypothalamic feeding regulatory pathway , 2013 .

[38]  F. Capasso,et al.  Multispectral Chiral Imaging with a Metalens. , 2016, Nano letters.

[39]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.