Making sense of cosmic-ray soil moisture measurements and eddy covariance data with regard to crop water use and field water balance

[1]  J. Zadoks A decimal code for the growth stages of cereals , 1974 .

[2]  D. R. Tottman The decimal code for the growth stages of cereals, with illustrations , 1987 .

[3]  T. McVicar,et al.  Water balance modelling: concepts and applications. , 2002 .

[4]  Senthold Asseng,et al.  An overview of APSIM, a model designed for farming systems simulation , 2003 .

[5]  D. Baldocchi Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future , 2003 .

[6]  W. J. Bond,et al.  Estimations of vapour pressure deficit and crop water demand in APSIM and their implications for prediction of crop yield, water use, and deep drainage , 2004 .

[7]  M. Robertson,et al.  Simulating lucerne growth and water use on diverse soil types in a Mediterranean-type environment , 2005 .

[8]  Gabriel Abramowitz,et al.  Towards a benchmark for land surface models , 2005 .

[9]  R. Scott,et al.  Measuring soil moisture content non‐invasively at intermediate spatial scale using cosmic‐ray neutrons , 2008 .

[10]  J. Austin,et al.  Assessing the spatial impact of climate on wheat productivity and the potential value of climate forecasts at a regional level , 2009 .

[11]  P. Thorburn,et al.  Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. , 2010 .

[12]  T. Ferré,et al.  Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays , 2010 .

[13]  Qiang Yu,et al.  Modelling nitrous oxide and carbon dioxide emission from soil in an incubation experiment , 2011 .

[14]  D. Liu,et al.  Modelling the impacts of climate change on wheat yield and field water balance over the Murray–Darling Basin in Australia , 2011 .

[15]  W. Baethgen,et al.  Characterizing spatial and temporal variability of crop yield caused by climate and irrigation in the North China Plain , 2011 .

[16]  S. Oswald,et al.  Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons , 2011 .

[17]  Albert I. J. M. van Dijk Model-data fusion: using observations to understand and reduce uncertainty in hydrological models , 2011 .

[18]  T. Ferré,et al.  Field Validation of a Cosmic‐Ray Neutron Sensor Using a Distributed Sensor Network , 2012 .

[19]  W. J. Shuttleworth,et al.  COSMOS: the COsmic-ray Soil Moisture Observing System , 2012 .

[20]  H. Hendricks Franssen,et al.  Accuracy of the cosmic‐ray soil water content probe in humid forest ecosystems: The worst case scenario , 2013 .

[21]  M. Zreda,et al.  Footprint diameter for a cosmic‐ray soil moisture probe: Theory and Monte Carlo simulations , 2013 .

[22]  K. Moore,et al.  Evaluating APSIM Maize, Soil Water, Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United States , 2014 .

[23]  Auro C. Almeida,et al.  Field testing of the universal calibration function for determination of soil moisture with cosmic‐ray neutrons , 2014 .

[24]  J. Wallace,et al.  Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia , 2014 .

[25]  Chris Murphy,et al.  APSIM - Evolution towards a new generation of agricultural systems simulation , 2014, Environ. Model. Softw..

[26]  N. Huth,et al.  Modelling soil carbon and nitrogen dynamics using measurable and conceptual soil organic matter pools in APSIM , 2014 .

[27]  E. Wang,et al.  A reappraisal of the critical nitrogen concentration of wheat and its implications on crop modeling , 2014 .

[28]  L. Harper Ammonia: Measurement Issues , 2015 .

[29]  M. Zreda,et al.  Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons , 2015, 1602.04469.

[30]  T. Meyers,et al.  Current Micrometeorological Flux Methodologies with Applications in Agriculture , 2015 .

[31]  A. Ireson,et al.  Estimating field-scale root zone soil moisture using the cosmic-ray neutron probe , 2015 .

[32]  H. Hendricks Franssen,et al.  An empirical vegetation correction for soil water content quantification using cosmic ray probes , 2015 .

[33]  Eva van Gorsel,et al.  OzFlux data: network integration from collection to curation , 2016 .

[34]  A. Nguy-Robertson,et al.  Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content , 2016 .

[35]  R. Allen,et al.  Feasibility analysis of using inverse modeling for estimating field-scale evapotranspiration in maize and soybean fields from soil water content monitoring networks , 2016 .

[36]  C. Rebmann,et al.  Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity , 2017 .

[37]  D. R. Sena,et al.  Evaluation of the APSIM model in cropping systems of Asia , 2017 .

[38]  Zhongkui Luo,et al.  Opportunities for enhancing yield and soil carbon sequestration while reducing N2O emissions in rainfed cropping systems , 2017 .