Distinct melting behaviour of partially oxidized Cu nanoparticles and nanowires

While most of the experimental studies are dealing with partially oxidized metallic nanosolids, their behaviour is not well understood theoretically. To this end we utilized molecular dynamics simulation and charge-optimized many-body potential to probe melting of Cu nanoparticles and nanowires with and without a monolayer of Cu$_2$O as a shell. It is shown that partially oxidized nanosolids present a different melting behaviour than the widely accepted picture of melting, and especially different than surface melting. (i) For both types of nanosolids we observed inward diffusion of $\sim$40\% of atomic oxygen into the metallic core at room temperature. (ii) For the nanowire with oxide shell we observed a solid state phase transition in the Cu core that is not present for the case without the oxide. (iii) Prior to melting, the oxide shell shrinks, and this process continues after melting, to form a particulate oxide, for both types of nanosolids.

[1]  A. Manolescu,et al.  On the role of ion potential energy in low energy HiPIMS deposition: An atomistic simulation , 2021, Surface and Coatings Technology.

[2]  Movaffaq Kateb Stencil growth of metallic nanorod: An atomistic simulation , 2020, IOP SciNotes.

[3]  Movaffaq Kateb,et al.  Effect of substrate bias on microstructure of epitaxial film grown by HiPIMS: An atomistic simulation , 2020, 2006.05813.

[4]  O. Jankovský,et al.  The Effect of Nanosizing on the Oxidation of Partially Oxidized Copper Nanoparticles , 2020, Materials.

[5]  O. Melnyk,et al.  Nickel Nanowires Based on Icosahedral Structure , 2019, METALLOFIZIKA I NOVEISHIE TEKHNOLOGII.

[6]  Movaffaq Kateb,et al.  Determining phase transition using potential energy distribution and surface energy of Pd nanoparticles , 2019, Computational Materials Science.

[7]  J. Simonato,et al.  High-temperature stability of copper nanoparticles through Cu@Ag nanostructures , 2019, Journal of Nanoparticle Research.

[8]  Movaffaq Kateb,et al.  Role of ionization fraction on the surface roughness, density, and interface mixing of the films deposited by thermal evaporation, dc magnetron sputtering, and HiPIMS: An atomistic simulation , 2019, Journal of Vacuum Science & Technology A.

[9]  Y. Jeng,et al.  Coalescence and epitaxial self-assembly of Cu nanoparticles on graphene surface: A molecular dynamics study , 2019, Computational Materials Science.

[10]  Movaffaq Kateb,et al.  Size and shape-dependent melting mechanism of Pd nanoparticles , 2018, Journal of Nanoparticle Research.

[11]  T. Shi,et al.  Molecular dynamics simulation of the melting behavior of copper nanorod , 2018 .

[12]  M. Cho,et al.  Molecular dynamics study on the coalescence kinetics and mechanical behavior of nanoporous structure formed by thermal sintering of Cu nanoparticles , 2018 .

[13]  P. Shi,et al.  Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study , 2017, Nanotechnology.

[14]  Liyang Lin,et al.  Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates , 2017 .

[15]  S. Ouaskit,et al.  The behavior of the thermal conductivity near the melting temperature of copper nanoparticle , 2015 .

[16]  T. Çagin,et al.  Physical properties of Cu nanoparticles: A molecular dynamics study , 2014 .

[17]  A. Stukowski Computational Analysis Methods in Atomistic Modeling of Crystals , 2013, JOM.

[18]  K. Cheong,et al.  Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route , 2013, Journal of Nanoparticle Research.

[19]  J. Douglas,et al.  Glassy Interfacial Dynamics of Ni Nanoparticles: Part I Colored Noise, Dynamic Heterogeneity and Collective Atomic Motion. , 2013, Soft matter.

[20]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .

[21]  Movaffaq Kateb,et al.  Comparison of Fracture Behavior of Sharp with Blunt Crack Tip in Nanocrystalline Materials by Molecular Dynamics Simulation , 2012 .

[22]  A. Stukowski Structure identification methods for atomistic simulations of crystalline materials , 2012, 1202.5005.

[23]  U. Pal,et al.  Effects of surface oxidation on the linear optical properties of Cu nanoparticles , 2011 .

[24]  Tzu-Ray Shan,et al.  Atomistic simulations of copper oxidation and Cu/Cu2O interfaces using charge-optimized many-body potentials , 2011 .

[25]  C. He,et al.  Melting of Cu Nanowires: A Study Using Molecular Dynamics Simulation , 2010 .

[26]  V. Yang,et al.  Thermo-mechanical behavior of nano aluminum particles with oxide layers during melting , 2010 .

[27]  A. Safaei The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals , 2010 .

[28]  H. Thomas Hahn,et al.  Intense pulsed light sintering of copper nanoink for printed electronics , 2009 .

[29]  A. Bogaerts,et al.  Numerical Study of the Size-Dependent Melting Mechanisms of Nickel Nanoclusters , 2009 .

[30]  H. M. Lu,et al.  Size dependent interface energy and its applications , 2008 .

[31]  M. A. Shandiz,et al.  Melting entropy and enthalpy of metallic nanoparticles , 2008 .

[32]  D. Tudela Silver(II) Oxide or Silver(I,III) Oxide?. , 2008 .

[33]  Younan Xia,et al.  Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink‐Jet Printing , 2008 .

[34]  N. V. Peskov,et al.  Oxidation of metal nanoparticles: Experiment and model , 2007 .

[35]  Hirotaro Mori,et al.  Hollow oxide formation by oxidation of Al and Cu nanoparticles , 2007 .

[36]  A. A. Alexeenko,et al.  Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix , 2007 .

[37]  S. Alavi,et al.  Molecular dynamics simulations of the melting of aluminum nanoparticles. , 2006, The journal of physical chemistry. A.

[38]  F. Delogu Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point : Molecular dynamics simulations , 2005 .

[39]  X. Bian,et al.  Melting of Cu nanoclusters by molecular dynamics simulation , 2003 .

[40]  Kenichi Iga,et al.  Introduction to Nanotechnology , 2002, Fluorescent Nanodiamonds.

[41]  Yuming Wang,et al.  TIGHT-BINDING MOLECULAR-DYNAMICS STUDY OF A COPPER OXIDE CU4O , 1999 .

[42]  Q. Jiang,et al.  Melting thermodynamics of organic nanocrystals , 1999 .

[43]  Lianmao Peng,et al.  Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices , 1996 .

[44]  F. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994, Physical review. B, Condensed matter.

[45]  B. Berne,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994, chem-ph/9406002.

[46]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[47]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[48]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[49]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[50]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[51]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[52]  D. P. MacDougall,et al.  A Mechanical Analyzer for the Solution of Secular Equations and the Calculation of Molecular Vibration Frequencies , 1937 .

[53]  M. Aliofkhazraei Handbook of nanoparticles , 2015 .

[54]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[55]  M. A. Shandiz,et al.  Modeling the Melting Temperature of Nanoparticles by an Analytical Approach , 2008 .

[56]  Heng,et al.  Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices , 2004 .

[57]  C. Brooks Computer simulation of liquids , 1989 .

[58]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .