The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]

Abstract We consider polynomials that are orthogonal on [−1,1] with respect to a modified Jacobi weight (1− x ) α (1+ x ) β h ( x ), with α , β >−1 and h real analytic and strictly positive on [−1,1]. We obtain full asymptotic expansions for the monic and orthonormal polynomials outside the interval [−1,1], for the recurrence coefficients and for the leading coefficients of the orthonormal polynomials. We also deduce asymptotic behavior for the Hankel determinants and for the monic orthogonal polynomials on the interval [−1,1]. For the asymptotic analysis we use the steepest descent technique for Riemann–Hilbert problems developed by Deift and Zhou, and applied to orthogonal polynomials on the real line by Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou. In the steepest descent method we will use the Szegő function associated with the weight and for the local analysis around the endpoints ±1 we use Bessel functions of appropriate order, whereas Deift et al. use Airy functions.

[1]  Stephanos Venakides,et al.  A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials , 2001 .

[2]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[3]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Level Spacing Distributions and the Bessel Kernel , 1993 .

[4]  Walter Van Assche,et al.  Asymptotics for Orthogonal Polynomials , 1987 .

[5]  M. Vanlessen Universal Behavior for Averages of Characteristic Polynomials at the Origin of the Spectrum , 2003 .

[6]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[7]  P. D. Miller,et al.  Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles , 2002 .

[8]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[9]  Maarten Vanlessen,et al.  Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight , 2002, J. Approx. Theory.

[10]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[11]  A. Kuijlaars,et al.  Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.

[12]  T. Nagao,et al.  Laguerre ensembles of random matrices: Nonuniversal correlation functions , 1993 .

[13]  T. Kriecherbauer,et al.  Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .

[14]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[15]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[16]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[17]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[18]  P. Miller Asymptotics of semiclassical soliton ensembles: rigorous justification of the WKB approximation , 2001, nlin/0108052.

[19]  Z. Wang,et al.  Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.

[20]  D. Lubinsky An update on orthogonal polynomials and weighted approximation on the real line , 1993 .

[21]  D. Lubinsky A survey of general orthogonal polynomials for weights on finite and infinite intervals , 1987, Acta Applicandae Mathematicae.

[22]  Yan V. Fyodorov,et al.  Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002 .

[23]  K. Mclaughlin,et al.  Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration , 2002, math-ph/0211022.

[24]  Laurent Baratchart,et al.  Asymptotic Error Estimates for L2 Best Rational Approximants to Markov Functions , 2001, J. Approx. Theory.

[25]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[26]  Leon M. Hall,et al.  Special Functions , 1998 .

[27]  D. Lubinsky Asymptotics of Orthogonal Polynomials: Some Old, Some New, Some Identities , 2000 .

[28]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[29]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[30]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[31]  Kurt Johansson,et al.  ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .

[32]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[33]  Maarten Vanlessen,et al.  Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002 .

[34]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[35]  R. Wong,et al.  On the Asymptotics of the Meixner—Pollaczek Polynomials and Their Zeros , 2000 .

[36]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[37]  W.-Y. QIU,et al.  Uniform Asymptotic Formula for Orthogonal Polynomials with Exponential Weight , 2000, SIAM J. Math. Anal..

[38]  P. Deift,et al.  Perturbation theory for infinite-dimensional integrable systems on the line. A case study , 2002 .

[39]  W. Van Assche,et al.  Quadratic Hermite–Padé Approximation to the Exponential Function: A Riemann–Hilbert Approach , 2003 .

[40]  P. Deift,et al.  Long‐time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space , 2002, math/0206222.

[41]  Laurent Baratchart,et al.  Asymptotic Uniqueness of Best Rational Approximants of Given Degree to Markov Functions in L 2 of the Circle , 1998 .

[42]  J. C. Tressler,et al.  Fourth Edition , 2006 .

[43]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[44]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[45]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[46]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .