Gradient recovery type a posteriori error estimate for finite element approximation on non-uniform meshes

In this paper, we derive gradient recovery type a posteriori error estimate for the finite element approximation of elliptic equations. We show that a posteriori error estimate provide both upper and lower bounds for the discretization error on the non-uniform meshes. Moreover, it is proved that a posteriori error estimate is also asymptotically exact on the uniform meshes if the solution is smooth enough. The numerical results demonstrating the theoretical results are also presented in this paper.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[3]  Aihui Zhou,et al.  EXTRAPOLATION FOR COLLOCATION METHOD OF THE FIRST KIND VOLTERRA INTEGRAL EQUATIONS , 1991 .

[4]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[5]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[6]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[7]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[8]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[9]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[10]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[11]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[12]  Zhimin Zhang,et al.  Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .

[13]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[14]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for elliptic problems on highly graded meshes , 1995 .

[15]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[16]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[17]  Zhimin Zhang,et al.  Mathematical analysis of Zienkiewicz—Zhu's derivative patch recovery technique , 1996 .

[18]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[19]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[20]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[21]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[22]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[23]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[24]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .