PI-Servo with State-D Feedback Control for LTI Systems

This study proposes a new PI-servo with state-D feedback control design method for linear time- invariant systems of type-0. The method aims for simultaneous command following and disturbance rejection control objectives. The main theorem with proof and design procedures are presented. Two numerical examples serve to demonstrate the advantages of using the proposed method compared with the classic Ogata's method.

[2]  T. H. S. Abdelaziz Pole assignment by state-derivative feedback for single-input linear systems , 2007 .

[3]  Michael Valásek,et al.  Direct algorithm for pole placement by state-derivative feedback for multi-inputlinear systems - nonsingular case , 2005, Kybernetika.

[4]  T H S Abdelaziz Robust pole assignment for linear time-invariant systems using state-derivative feedback , 2009 .

[5]  Yi-Qing Ni,et al.  State‐Derivative Feedback Control of Cable Vibration Using Semiactive Magnetorheological Dampers , 2005 .

[6]  Gregory N. Washington,et al.  Acceleration-based vibration control of distributed parameter systems using the reciprocal state-space framework , 2002 .

[7]  Michael Valásek,et al.  Eigenstructure assignment by proportional-plus-derivative feedback for second-order linear control systems , 2005, Kybernetika.

[8]  José Mário Araújo,et al.  Alocação de pólos em sistemas lineares invariantes no tempo utilizando realimentação da derivada de estados e a equação de Lyapunov , 2009 .

[9]  Marcelo C. M. Teixeira,et al.  Robust state-derivative pole placement LMI-based designs for linear systems , 2009, Int. J. Control.

[10]  Eduard Reithmeier,et al.  Robust vibration control of dynamical systems based on the derivative of the state , 2003 .

[11]  Marcelo C. M. Teixeira,et al.  DESIGN OF STATE-DERIVATIVE FEEDBACK CONTROLLERS USING A STATE FEEDBACK CONTROL DESIGN , 2007 .

[12]  S. Sujitjorn,et al.  State-PID Feedback for Pole Placement of LTI Systems , 2011 .

[13]  Marcelo C. M. Teixeira,et al.  Stabilizability and Disturbance Rejection with State-Derivative Feedback , 2010 .

[14]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[15]  Michael Valášek,et al.  STATE DERIVATIVE FEEDBACK BY LQR FOR LINEAR TIME-INVARIANT SYSTEMS , 2005 .

[16]  Michael Valášek,et al.  A Direct Algorithm for Pole Placement by State-derivative Feedback for Single-input Linear Systems , 2003 .

[17]  Gregory N. Washington,et al.  Acceleration Feedback-Based Active and Passive Vibration Control of Landing Gear Components , 2002 .

[18]  Frank L. Lewis,et al.  A geometric theory for derivative feedback , 1991 .

[19]  M. Valasek,et al.  Pole-placement for SISO linear systems by state-derivative feedback , 2004 .

[20]  Taha H. S. Abdelaziz,et al.  Optimal control using derivative feedback for linear systems , 2010 .