Design of a Mode Conversion Ultrasonic Motor for Position Control

The many useful characteristics of ultrasonic motors, such as high holding torques, and high torque at low speeds, have made them the subject of increasing interest. In addition, several of their characteristics make them attractive for aerospace applications: they have a torque to weight ratio, and they require neither gearing mechanisms nor lubrication. Moreover, they create negligible magnetic fields, and conversely, they are not affected by external magnetic fields. Ultrasonic motors based on bolt-tightened structures offer simplicity and high stress capability. They use the inverse piezoelectric effect in the stator to produce vibrational energy, which is transferred to the rotor by friction. We designed a bolt-tightened ultrasonic motor using numerical modelling tools (finite element and electromechanical circuit analyses), creating an equivalent circuit model that takes into account the electromechanical energy conversion in the stator and the contact between the stator and the rotor. Analysis of the circuit gives insight into the behavior of the motor and allows its performance to be calculated. Two prototypes of the motor were built; their transient responses and other quantities, such as starting torque, were measured. In this paper, we discuss the numerical and the experimental results, and demonstrate the usefulness of numerical analysis in designing ultrasonic motors and estimating their performance.