Aiding classification of gene expression data with feature selection: a comparative study

C. Shang and Q. Shen. Aiding classification of gene expression data with feature selection: a comparative study. Computational Intelligence Research, 1(1):68-76.

[1]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[2]  Bernhard Schölkopf,et al.  Feature selection and transduction for prediction of molecular bioactivity for drug design , 2003, Bioinform..

[3]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[4]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Boerwinkle,et al.  Computational methods for gene expression-based tumor classification. , 2000, BioTechniques.

[6]  A. Brazma,et al.  Gene expression data analysis , 2000, FEBS letters.

[7]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[9]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[10]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[11]  George Karypis,et al.  Gene Classification Using Expression Profiles: A Feasibility Study , 2005, Int. J. Artif. Intell. Tools.

[12]  Qiang Shen,et al.  Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches , 2004, IEEE Transactions on Knowledge and Data Engineering.

[13]  Nello Cristianini,et al.  Large Margin Trees for Induction and Transduction , 1999, ICML.

[14]  Michael I. Jordan,et al.  Feature selection for high-dimensional genomic microarray data , 2001, ICML.

[15]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[16]  Nir Friedman,et al.  Tissue classification with gene expression profiles. , 2000 .

[17]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[18]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[19]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[20]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Keki B. Irani,et al.  Multi-interval discretization of continuos attributes as pre-processing for classi cation learning , 1993, IJCAI 1993.

[22]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[23]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[24]  John Shawe-Taylor,et al.  Large Margin Decision Trees for Induction and Transduction , 1999, ICML 1999.

[25]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .