Study on the collapse of tapered tubes subjected to oblique loads

Abstract In this work, several antisymmetric tapered tubes with an inner stiffener under axial and oblique loading are studied and optimum dimensions of the tapered tube are derived from a crashworthiness point of view. The importance of detecting these dimensions is optimizing the weight while the crashworthiness of tube is not damaged. By using an internal stiffener, crashworthiness is improved against oblique loads, and the sensitivity of tubes with respect to oblique loads and bending deformation is diminished. The numerical models have been developed using the explicit finite element code LS-DYNA. The crashworthiness of the optimized tapered tube is compared with that of an octagonal-cross-section tube which is known as the best energy absorber model in the literature. It is shown that an optimized tapered tube has an average of 29.3 per cent less crushing displacement in comparison with octagonal-section tube when both tubes have the same weights and the same peaks of crushing load. Finally, the orientation of loading is changed and the best orientation is proposed.