Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis

BACKGROUND Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. METHODS In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified data on eyes into healthy controls, multiple-sclerosis-associated optic neuritis (MSON), and multiple sclerosis without optic neuritis (MSNON). We assessed thickness of the retinal layers and we rated individual layer segmentation performance by random effects meta-analysis for MSON eyes versus control eyes, MSNON eyes versus control eyes, and MSNON eyes versus MSON eyes. We excluded relevant sources of bias by funnel plots. FINDINGS Of 25 497 records identified, 110 articles were eligible and 40 reported data (in total 5776 eyes from patients with multiple sclerosis [1667 MSON eyes and 4109 MSNON eyes] and 1697 eyes from healthy controls) that met published OCT quality control criteria and were suitable for meta-analysis. Compared with control eyes, the peripapillary retinal nerve fibre layer (RNFL) showed thinning in MSON eyes (mean difference -20·10 μm, 95% CI -22·76 to -17·44; p<0·0001) and in MSNON eyes (-7·41 μm, -8·98 to -5·83; p<0·0001). The macula showed RNFL thinning of -6·18 μm (-8·07 to -4·28; p<0·0001) in MSON eyes and -2·15 μm (-3·15 to -1·15; p<0·0001) in MSNON eyes compared with control eyes. Atrophy of the macular ganglion cell layer and inner plexiform layer (GCIPL) was -16·42 μm (-19·23 to -13·60; p<0·0001) for MSON eyes and -6·31 μm (-7·75 to -4·87; p<0·0001) for MSNON eyes compared with control eyes. A small degree of inner nuclear layer (INL) thickening occurred in MSON eyes compared with control eyes (0·77 μm, 0·25 to 1·28; p=0·003). We found no statistical difference in the thickness of the combined outer nuclear layer and outer plexiform layer when we compared MSNON or MSON eyes with control eyes, but we found a small degree of thickening of the combined layer when we compared MSON eyes with MSNON eyes (1·21 μm, 0·24 to 2·19; p=0·01). INTERPRETATION The largest and most robust differences between the eyes of people with multiple sclerosis and control eyes were found in the peripapillary RNFL and macular GCIPL. Inflammatory disease activity might be captured by the INL. Because of the consistency, robustness, and large effect size, we recommend inclusion of the peripapillary RNFL and macular GCIPL for diagnosis, monitoring, and research. FUNDING None.

Alexander Klistorner | Bernhard Hemmer | Pablo Villoslada | Shiv Saidha | Xavier Montalban | Carsten Finke | Axel Petzold | Nasrin Asgari | Elliot Frohman | Teresa Frohman | Birgit Lorenz | Andrés Cruz-Herranz | Fiona Costello | Sven Schippling | Peter A Calabresi | Friedemann Paul | Randy Kardon | Letizia Leocani | Timm Oberwahrenbrock | Peter Calabresi | Laura Balcer | Philipp Albrecht | Thomas Korn | Hong Jiang | Jaume Sastre-Garriga | Frederike Cosima Oertel | Ari Green | Netta Levin | Ricarda Diem | Scott Kolbe | Rachel Nolan | Daniel Boehringer | Robert Bermel | Alexander Brandt | Su-Chun Huang | Olivier Outteryck | Athina Papadopoulou | L. Leocani | X. Montalban | S. Saidha | P. Calabresi | F. Paul | R. Kardon | B. Lorenz | A. Toosy | D. Boehringer | A. Klistorner | B. Hemmer | P. Villoslada | J. Sastre-Garriga | D. Keegan | J. Frederiksen | R. Bermel | A. Green | T. Korn | T. Frohman | E. Frohman | L. Balcer | Hong Jiang | H. Dollfus | N. Levin | S. Schippling | A. Brandt | O. White | E. H. Martinez-Lapiscina | P. Albrecht | C. Oreja-Guevara | R. Nolan | J. Graves | A. Waldman | J. Imitola | S. Kolbe | S. Wong | B. Leroy | G. Black | N. Asgari | C. Cordano | L. Balk | A. Papadopoulou | J. Havla | M. Ringelstein | O. Aktas | F. Costello | O. Outteryck | A. Petzold | B. Knier | P. Lišková | C. Finke | Orhan Aktas | H. Zimmermann | L. Benson | B. Sánchez-Dalmau | Lisanne J Balk | Laura J Balcer | Gorm Pihl-Jensen | Neil Shuey | Teresa C Frohman | Elliot M Frohman | Celia Oreja-Guevara | Angela Vidal-Jordana | Janine Mikolajczak | Hanna Zimmermann | Raed Behbehani | Benjamin Knier | T. Oberwahrenbrock | J. Bernard | J. Burton | Á. Vidal-Jordana | R. Diem | Jennifer Graves | Graeme Black | Ahmed Toosy | Eric J. Kildebeck | N. Shuey | G. Pihl-Jensen | M. Morrow | K. Soelberg | Patrik Vermersch | Eric Kildebeck | Ari J Green | Joachim Havla | Jane Ashworth | Jaime Imitola | Marius Ringelstein | Helene Dollfus | J. Calkwood | P. Vermersch | J. Ashworth | R. Behbehani | A. Courtney | A. Cruz-Herranz | Avril Daly | C. Fasser | E. Garcia-Martin | I. Suárez | Su-Chun Huang | D. Leroux | J. Preiningerova | J. Mikolajczak | F. Oertel | B. Osborne | Robert K Shin | R. Torres | A. Yeh | Elena H Martinez-Lapiscina | Jana Lizrova Preiningerova | Christian Cordano | Bernardo Sanchez-Dalmau | Jette Frederiksen | Owen White | Lisanne Balk | Leslie Benson | Jacqueline Bernard | Jodie Burton | Jonathan Calkwood | Ardith Courtney | Avril Daly | Christina Fasser | Elenaw Garcia-Martin | Inés González Suárez | David Keegan | Bart LeRoy | Dorothee Leroux | Petra Liskova | Elena Hernández Martínez-Lapiscina | Mark Morrow | Benjamin Osborne | Robert Shin | Kerstin Soelberg | Rubén Torres | Amy Waldman | Ann Yeh | Sui Wong | Ari J. Green | F. C. Oertel | E. Martinez-Lapiscina | Teresa C Frohman | Elliot M Frohman | Lisanne J Balk | Lisanne Balk | Elliot Frohman | Teresa Frohman | Andrés Cruz-Herranz | Amy T Waldman | Jacqueline T. Bernard | Ardith Courtney | Amy T. Waldman | Carsten Finke

[1]  M. Dinkin Trans-synaptic Retrograde Degeneration in the Human Visual System: Slow, Silent, and Real , 2017, Current Neurology and Neuroscience Reports.

[2]  Amy Conger,et al.  Retinal Nerve Fiber Layer Thickness in Multiple Sclerosis , 2011, Türk Oftalmoloji Dergisi.

[3]  S. Graham,et al.  Inner Nuclear Layer Thickening Is Inversley Proportional to Retinal Ganglion Cell Loss in Optic Neuritis , 2013, PloS one.

[4]  G. Holder Pattern Electroretinography (PERG) and an Integrated Approach to Visual Pathway Diagnosis , 2001, Progress in Retinal and Eye Research.

[5]  P. Deyn,et al.  Age-related macular degeneration, glaucoma and Alzheimer’s disease: amyloidogenic diseases with the same glymphatic background? , 2016, Cellular and Molecular Life Sciences.

[6]  M. Fredrikson,et al.  Benign Multiple Sclerosis is Associated with Reduced Thinning of the Retinal Nerve Fiber and Ganglion Cell Layers in Non-Optic-Neuritis Eyes , 2015, Journal of clinical neurology.

[7]  I. Zubizarreta,et al.  Dynamics of retinal injury after acute optic neuritis , 2015, Annals of neurology.

[8]  I. Allen,et al.  Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. , 2010, Brain : a journal of neurology.

[9]  F. Jacques Defining the clinical course of multiple sclerosis: The 2013 revisions , 2015, Neurology.

[10]  S. Sizmaz,et al.  Evaluation of the Innermost Retinal Layers and Visual Evoked Potentials in Patients with Multiple Sclerosis , 2016, Current eye research.

[11]  D. Hood,et al.  Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry , 2013, Documenta Ophthalmologica.

[12]  R. Zivadinov,et al.  Optical coherence tomography in multiple sclerosis , 2006, The Lancet Neurology.

[13]  M. Etemadifar,et al.  Effects of vitamin D on retinal nerve fiber layer in vitamin D deficient patients with optic neuritis: Preliminary findings of a randomized, placebo-controlled trial , 2015, Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences.

[14]  Axel Petzold,et al.  A Simple Sign for Recognizing Off–Axis OCT Measurement Beam Placement in the Context of Multicentre Studies , 2012, PloS one.

[15]  L. Frishman,et al.  Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis , 2014, Multiple sclerosis.

[16]  F. Paul,et al.  Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations , 2013, Multiple sclerosis.

[17]  P. Hanson,et al.  Edinburgh Research Explorer Mitochondrial Changes within Axons in Multiple Sclerosis Mitochondrial Changes within Axons in Multiple Sclerosis , 2022 .

[18]  Kesshi M Jordan,et al.  Spinal cord gray matter atrophy correlates with multiple sclerosis disability , 2014, Annals of neurology.

[19]  Fiona Costello,et al.  The Afferent Visual Pathway: Designing a Structural-Functional Paradigm of Multiple Sclerosis , 2013, ISRN neurology.

[20]  Alexander U. Brandt,et al.  Reliability of Intra-Retinal Layer Thickness Estimates , 2015, PloS one.

[21]  A. Green,et al.  Microcystic macular oedema in multiple sclerosis is associated with disease severity. , 2012, Brain : a journal of neurology.

[22]  Shiv Saidha,et al.  Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. , 2012, Brain : a journal of neurology.

[23]  G. Plant,et al.  Clinical Use of OCT and MSON Mimics , 2016 .

[24]  P. Villoslada,et al.  Usefulness of optical coherence tomography to distinguish optic neuritis associated with AQP4 or MOG in neuromyelitis optica spectrum disorders , 2016, Therapeutic advances in neurological disorders.

[25]  P. Calabresi,et al.  Retinal degeneration in primary-progressive multiple sclerosis: A role for cortical lesions? , 2017, Multiple sclerosis.

[26]  R. Spaide RETINAL VASCULAR CYSTOID MACULAR EDEMA: Review and New Theory. , 2016, Retina.

[27]  R. Alroughani,et al.  Retinal nerve fiber layer thickness and neurologic disability in relapsing–remitting multiple sclerosis , 2015, Journal of the Neurological Sciences.

[28]  Hiroshi Ishikawa,et al.  Ganglion cell loss in relation to visual disability in multiple sclerosis. , 2012, Ophthalmology.

[29]  E. C. Graham,et al.  Progressive Loss of Retinal Ganglion Cells and Axons in Nonoptic Neuritis Eyes in Multiple Sclerosis: A Longitudinal Optical Coherence Tomography Study. , 2016, Investigative ophthalmology & visual science.

[30]  Pablo Villoslada,et al.  Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS , 2007, Neurology.

[31]  R. Kardon,et al.  Retinal ganglion cell layer thinning within one month of presentation for optic neuritis , 2016, Multiple sclerosis.

[32]  Sven Schippling,et al.  Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome , 2013, Multiple sclerosis.

[33]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[34]  S. Galetta,et al.  Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial , 2017, The Lancet Neurology.

[35]  R. Hohlfeld,et al.  Myelin-oligodendrocyte-glycoprotein (MOG) autoantibodies as potential markers of severe optic neuritis and subclinical retinal axonal degeneration , 2016, Journal of Neurology.

[36]  J. Álvarez-cermeño,et al.  Comparative Diagnostic Accuracy of Ganglion Cell-Inner Plexiform and Retinal Nerve Fiber Layer Thickness Measures by Cirrus and Spectralis Optical Coherence Tomography in Relapsing-Remitting Multiple Sclerosis , 2014, BioMed research international.

[37]  R. Kardon,et al.  The temporal evolution of structural and functional measures after acute optic neuritis , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[38]  N. Raz,et al.  Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions , 2014, Neurology.

[39]  Axel Petzold,et al.  The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment , 2012, PloS one.

[40]  J. Frederiksen,et al.  Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis , 2017, Journal of Neurology.

[41]  C. Polman,et al.  A dam for retrograde axonal degeneration in multiple sclerosis? , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[42]  M. Abdelhakim,et al.  OCT and Visual Field Changes as Useful Markers for Follow-up of Axonal Loss in Multiple Sclerosis in Egyptian Patients , 2017, Ocular immunology and inflammation.

[43]  The clinical profile of optic neuritis. Experience of the Optic Neuritis Treatment Trial. Optic Neuritis Study Group. , 1991, Archives of ophthalmology.

[44]  L. Balk,et al.  The clinical spectrum of microcystic macular edema. , 2014, Investigative ophthalmology & visual science.

[45]  A. Petzold Neuroprotection and visual function after optic neuritis , 2017, Current opinion in neurology.

[46]  J. Frederiksen,et al.  Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis , 2016, Multiple sclerosis.

[47]  Sara Llufriu,et al.  Trans‐synaptic axonal degeneration in the visual pathway in multiple sclerosis , 2014, Annals of neurology.

[48]  C. Gasperini,et al.  Visual pathway neurodegeneration winged by mitochondrial dysfunction , 2014, Annals of clinical and translational neurology.

[49]  Stephen A Boppart,et al.  Computational optical coherence tomography [Invited]. , 2017, Biomedical optics express.

[50]  R. Abouqal,et al.  Evaluation of retinal nerve fiber layer thickness measured by optical coherence tomography in Moroccan patients with multiple sclerosis. , 2015, Journal francais d'ophtalmologie.

[51]  Daniel F Kiernan,et al.  Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. , 2010, American journal of ophthalmology.

[52]  C. Crainiceanu,et al.  Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study , 2012, The Lancet Neurology.

[53]  J. Bailar The promise and problems of meta-analysis. , 1997, The New England journal of medicine.

[54]  S. Graham,et al.  Afferent visual pathways in multiple sclerosis: a review , 2017, Clinical & experimental ophthalmology.

[55]  Pablo Villoslada,et al.  The APOSTEL recommendations for reporting quantitative optical coherence tomography studies , 2016, Neurology.

[56]  D. Hood,et al.  Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. , 2013, Ophthalmology.

[57]  Amy Conger,et al.  The Impact of Utilizing Different Optical Coherence Tomography Devices for Clinical Purposes and in Multiple Sclerosis Trials , 2011, PloS one.

[58]  Mike P. Wattjes,et al.  The investigation of acute optic neuritis: a review and proposed protocol , 2014, Nature Reviews Neurology.

[59]  Shin C. Beh,et al.  Retinal architecture and mfERG , 2014, Neurology.

[60]  Bernhard Hemmer,et al.  Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination , 2016, Multiple sclerosis.

[61]  Vicente Polo,et al.  Neural networks to identify multiple sclerosis with optical coherence tomography , 2013, Acta ophthalmologica.

[62]  Axel Petzold,et al.  Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis , 2013, PloS one.

[63]  A. Petzold Retinal glymphatic system: an explanation for transient retinal layer volume changes? , 2016, Brain : a journal of neurology.

[64]  Aziz A. Khanifar,et al.  Retinal nerve fiber layer evaluation in multiple sclerosis with spectral domain optical coherence tomography , 2010, Clinical ophthalmology.

[65]  B. Uitdehaag,et al.  Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study , 2016, Journal of Neurology.

[66]  A. Nowacki,et al.  Optical Coherence Tomography for the Detection of Remote Optic Neuritis in Multiple Sclerosis , 2016, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[67]  R. Alroughani,et al.  Ganglion cell analysis in acute optic neuritis. , 2016, Multiple sclerosis and related disorders.

[68]  D. Goodin,et al.  Retinal Axonal Loss Begins Early in the Course of Multiple Sclerosis and Is Similar between Progressive Phenotypes , 2012, PloS one.

[69]  U. Schmidt-Erfurth,et al.  High Resolution Spectral Domain Optical Coherence Tomography (SD-OCT) in Multiple Sclerosis: The First Follow Up Study over Two Years , 2011, PloS one.

[70]  Jeffrey A. Cohen,et al.  Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria , 2011, Annals of neurology.

[71]  A. Traboulsee,et al.  Retinal nerve fiber layer thickness in benign multiple sclerosis , 2013, Multiple sclerosis.

[72]  S Greenland,et al.  Can meta-analysis be salvaged? , 1994, American journal of epidemiology.

[73]  Jie Shen,et al.  The Evaluation of the Retinal Nerve Fiber Layer in Multiple Sclerosis with Special-Domain Optical Coherence Tomography , 2013, Ophthalmologica.

[74]  Axel Petzold,et al.  Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis , 2010, The Lancet Neurology.

[75]  P. Vermersch,et al.  Length of optic nerve double inversion recovery hypersignal is associated with retinal axonal loss , 2016, Multiple sclerosis.

[76]  S. Graham,et al.  Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. , 2012, Investigative ophthalmology & visual science.

[77]  G. Plant,et al.  Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria , 2015, Multiple sclerosis.

[78]  Sui H Wong,et al.  Autoimmunity in visual loss , 2016, Handbook of Clinical Neurology.

[79]  Snehashis Roy,et al.  Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four‐year study , 2015, Annals of neurology.

[80]  David H. Miller,et al.  Vision and vision-related outcome measures in multiple sclerosis , 2014, Brain : a journal of neurology.

[81]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[82]  P. Raab,et al.  Clinical approach to optic neuritis: pitfalls, red flags and differential diagnosis , 2011, Therapeutic advances in neurological disorders.

[83]  C. Crainiceanu,et al.  Outer retinal changes following acute optic neuritis , 2016, Multiple sclerosis.

[84]  F. Paul,et al.  Retinal Damage in Multiple Sclerosis Disease Subtypes Measured by High-Resolution Optical Coherence Tomography , 2012, Multiple sclerosis international.

[85]  G. Rebolleda,et al.  Comparison of retinal nerve fiber layer measured by time domain and spectral domain optical coherence tomography in optic neuritis , 2011, Eye.

[86]  Gabriel Pardo,et al.  Reduced retinal nerve fiber layer and macular thickness in patients with multiple sclerosis with no history of optic neuritis identified by the use of spectral domain high-definition optical coherence tomography , 2011, Journal of Clinical Neuroscience.

[87]  S. Oh,et al.  Analysis of spectral domain optical coherence tomography measurements in optic neuritis: differences in neuromyelitis optica, multiple sclerosis, isolated optic neuritis and normal healthy controls , 2014, Acta ophthalmologica.

[88]  M. Mühlau,et al.  Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. , 2016, Brain : a journal of neurology.

[89]  F. Paul,et al.  Dynamic formation of macular microcysts independent of vitreous traction changes , 2014, Neurology.

[90]  S. Graham,et al.  Relationship between Optical Coherence Tomography and Electrophysiology of the Visual Pathway in Non-Optic Neuritis Eyes of Multiple Sclerosis Patients , 2014, PloS one.

[91]  M. Ejma,et al.  Analysis of retinal nerve fibre layer, visual evoked potentials and relative afferent pupillary defect in multiple sclerosis patients , 2016, Clinical Neurophysiology.