On the statistical complexity of quantum circuits

Kaifeng Bu,1, ∗ Dax Enshan Koh,2, † Lu Li,3, 4 Qingxian Luo,4, 5 and Yaobo Zhang6, 7 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore 3Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China 4School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China 5Center for Data Science, Zhejiang University, Hangzhou, Zhejiang 310027, China 6Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China 7Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China

[1]  Matus Telgarsky,et al.  Spectrally-normalized margin bounds for neural networks , 2017, NIPS.

[2]  Sebastian Ramos,et al.  Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling , 2016, 2017 IEEE Intelligent Vehicles Symposium (IV).

[3]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[4]  Hang Li,et al.  Deep learning for natural language processing: advantages and challenges , 2018 .

[5]  Ashraf Y. Maghari,et al.  A Comparative Study on Handwriting Digit Recognition Using Neural Networks , 2017, 2017 International Conference on Promising Electronic Technologies (ICPET).

[6]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[7]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[8]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[9]  Telecommunications Board,et al.  Quantum computing , 2019, Mathematics and Computation.

[10]  Matus Telgarsky,et al.  Benefits of Depth in Neural Networks , 2016, COLT.

[11]  Seth Lloyd,et al.  Continuous-variable quantum neural networks , 2018, Physical Review Research.

[12]  Michael J. Bremner,et al.  Quantum sampling problems, BosonSampling and quantum supremacy , 2017, npj Quantum Information.

[13]  V. Koltchinskii Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.

[14]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[15]  Liu Yan,et al.  Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann Machine , 2018 .

[16]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[17]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[18]  Kaifeng Bu,et al.  Depth-Width Trade-offs for Neural Networks via Topological Entropy , 2020, ArXiv.

[19]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[20]  Kunal Sharma,et al.  Trainability of Dissipative Perceptron-Based Quantum Neural Networks , 2020, ArXiv.

[21]  Christoph Meinel,et al.  Deep Learning for Medical Image Analysis , 2018, Journal of Pathology Informatics.

[22]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[23]  Peter Beling,et al.  Deep learning detecting fraud in credit card transactions , 2018, 2018 Systems and Information Engineering Design Symposium (SIEDS).

[24]  Guangwen Yang,et al.  Quantum computational advantage using photons , 2020, Science.

[25]  S. Mendelson,et al.  Entropy and the combinatorial dimension , 2002, math/0203275.

[26]  Ohad Shamir,et al.  Size-Independent Sample Complexity of Neural Networks , 2017, COLT.

[27]  Abbas Mehrabian,et al.  Nearly-tight VC-dimension bounds for piecewise linear neural networks , 2017, COLT.

[28]  Ashutosh Vyas,et al.  Deep Learning for Natural Language Processing , 2016 .

[29]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[30]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[31]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[32]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[33]  Christopher Kermorvant,et al.  Dropout Improves Recurrent Neural Networks for Handwriting Recognition , 2013, 2014 14th International Conference on Frontiers in Handwriting Recognition.

[34]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[35]  Gisbert Schneider,et al.  Deep Learning in Drug Discovery , 2016, Molecular informatics.

[36]  Yuemin Bian,et al.  Deep Learning for Drug Design: an Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era , 2018, The AAPS Journal.

[37]  Tobias J. Osborne,et al.  Training deep quantum neural networks , 2020, Nature Communications.

[38]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[39]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[40]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[41]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[42]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[43]  Carmen Palacios-Berraquero,et al.  Instead of ‘supremacy’ use ‘quantum advantage’ , 2019 .

[44]  Ryota Tomioka,et al.  Norm-Based Capacity Control in Neural Networks , 2015, COLT.

[45]  Rolando L. La Placa,et al.  How many qubits are needed for quantum computational supremacy? , 2018, Quantum.

[46]  V. Vapnik,et al.  Necessary and Sufficient Conditions for the Uniform Convergence of Means to their Expectations , 1982 .

[47]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.

[48]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[49]  Nathan Srebro,et al.  Exploring Generalization in Deep Learning , 2017, NIPS.

[50]  Moacir Antonelli Ponti,et al.  Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask , 2017, 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T).

[51]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[52]  Jelena Frtunikj,et al.  Deep Learning for Self-Driving Cars: Chances and Challenges , 2018, 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS).

[53]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[54]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[55]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[57]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.