Object tracking based on online representative sample selection via non-negative least square

In the most tracking approaches, a score function is utilized to determine which candidate is the optimal one by measuring the similarity between the candidate and the template. However, the representative samples selection in the template update is challenging. To address this problem, in this paper, we treat the template as a linear combination of representative samples and propose a novel approach to select representative samples based on the coefficient constrained model. We formulate the objective function into a non-negative least square problem and obtain the solution utilizing standard non-negative least square. The experimental results show that the observation module of our approach outperforms several other observation modules under the same feature and motion module, such as support vector machine, logistic regression, ridge regression and structured outputs support vector machine.

[1]  Xiao-Yuan Jing,et al.  Multi-spectral low-rank structured dictionary learning for face recognition , 2016, Pattern Recognit..

[2]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Zhenyu He,et al.  Writer identification using fractal dimension of wavelet subbands in gabor domain , 2010, Integr. Comput. Aided Eng..

[5]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[6]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[7]  Horst Bischof,et al.  Robust Multi-View Boosting with Priors , 2010, ECCV.

[8]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[9]  Zhenyu He,et al.  Joint sparse principal component analysis , 2017, Pattern Recognit..

[10]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[12]  David Zhang,et al.  Human Gait Recognition via Sparse Discriminant Projection Learning , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  Wai Keung Wong,et al.  Joint Tensor Feature Analysis For Visual Object Recognition , 2015, IEEE Transactions on Cybernetics.

[14]  Qing Wang,et al.  Online discriminative object tracking with local sparse representation , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[15]  Xinge You,et al.  Robust face recognition via occlusion dictionary learning , 2014, Pattern Recognit..

[16]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[17]  Zhenyu He,et al.  Robust Object Tracking via Key Patch Sparse Representation , 2017, IEEE Transactions on Cybernetics.

[18]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[19]  LiXin,et al.  A multi-view model for visual tracking via correlation filters , 2016 .

[20]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Binbin Pan,et al.  Supervised kernel nonnegative matrix factorization for face recognition , 2016, Neurocomputing.

[22]  Hanqing Lu,et al.  Collaborative Correlation Tracking , 2015, BMVC.

[23]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Huimin Lu,et al.  Underwater image de-scattering and classification by deep neural network , 2016, Comput. Electr. Eng..

[26]  Yuan Yan Tang,et al.  Topological Coding and Its Application in the Refinement of SIFT , 2014, IEEE Transactions on Cybernetics.

[27]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[29]  Xinge You,et al.  Dynamically Modulated Mask Sparse Tracking , 2017, IEEE Transactions on Cybernetics.

[30]  Bin Li,et al.  Wound intensity correction and segmentation with convolutional neural networks , 2017, Concurr. Comput. Pract. Exp..

[31]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Zhenyu He,et al.  3-D B-spline Wavelet-Based Local Standard Deviation (BWLSD): Its Application to Edge Detection and Vascular Segmentation in Magnetic Resonance Angiography , 2009, International Journal of Computer Vision.

[34]  Liang Xiao,et al.  Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal , 2017, IEEE Transactions on Image Processing.

[35]  C. L. Philip Chen,et al.  A Multiple-Kernel Fuzzy C-Means Algorithm for Image Segmentation , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[36]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[39]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[40]  Zhenyu He,et al.  Connected Component Model for Multi-Object Tracking , 2016, IEEE Transactions on Image Processing.

[41]  Zhenyu He,et al.  A multi-view model for visual tracking via correlation filters , 2016, Knowl. Based Syst..

[42]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Nuno Vasconcelos,et al.  On the design of robust classifiers for computer vision , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Weihua Ou,et al.  Multi-view non-negative matrix factorization by patch alignment framework with view consistency , 2016, Neurocomputing.

[45]  Weibin Yang,et al.  Accurate Tilt Sensing With Linear Model , 2011, IEEE Sensors Journal.

[46]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[48]  Dit-Yan Yeung,et al.  Understanding and Diagnosing Visual Tracking Systems , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[49]  Horst Bischof,et al.  On robustness of on-line boosting - a competitive study , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[50]  Xiao Ma,et al.  Visual object tracking with online sample selection via lasso regularization , 2017, Signal Image Video Process..

[51]  Bin Shen,et al.  Visual Tracking via Online Nonnegative Matrix Factorization , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[52]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[54]  Jason Weston,et al.  Solving multiclass support vector machines with LaRank , 2007, ICML '07.

[55]  Huimin Lu,et al.  Learning unified binary codes for cross-modal retrieval via latent semantic hashing , 2016, Neurocomputing.

[56]  Zhenyu He,et al.  Writer identification of Chinese handwriting documents using hidden Markov tree model , 2008, Pattern Recognit..

[57]  Yuan Yan Tang,et al.  Weighted Joint Sparse Representation for Removing Mixed Noise in Image , 2017, IEEE Transactions on Cybernetics.

[58]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Yuan Yan Tang,et al.  Semi-supervised discriminant analysis method for face recognition , 2015, Int. J. Wavelets Multiresolution Inf. Process..

[60]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[62]  Zhenyu He,et al.  Visual tracking via exemplar regression model , 2016, Knowl. Based Syst..

[63]  Anton van den Hengel,et al.  Learning Compact Binary Codes for Visual Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Horst Bischof,et al.  On-line semi-supervised multiple-instance boosting , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.