High-speed quantum networking by ship

Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.

[1]  Asher Peres Delayed choice for entanglement swapping , 2000 .

[2]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[3]  Simon J. Devitt,et al.  High Performance Quantum Computing , 2008, 0810.2444.

[4]  I. V. Inlek,et al.  Modular entanglement of atomic qubits using photons and phonons , 2014, Nature Physics.

[5]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[6]  Rupert Ursin,et al.  Experimental delayed-choice entanglement swapping , 2012 .

[7]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[8]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[9]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[10]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[11]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[12]  Simon J. Devitt,et al.  Classical Control of Large-Scale Quantum Computers , 2014, RC.

[13]  Ying Li,et al.  Long range failure-tolerant entanglement distribution , 2013 .

[14]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[15]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[16]  John J. L. Morton A silicon-based cluster state quantum computer , 2009 .

[17]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[18]  Prem Kumar,et al.  Infrastructure for the quantum internet , 2004, CCRV.

[19]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[20]  Simon J. Devitt,et al.  CLASSICAL PROCESSING REQUIREMENTS FOR A TOPOLOGICAL QUANTUM COMPUTING SYSTEM , 2009, 0906.0415.

[21]  Thora Tenbrink,et al.  Reference Frames , 2017, Encyclopedia of GIS.

[22]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[23]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[24]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[25]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[27]  D. Gottesman,et al.  Longer-baseline telescopes using quantum repeaters. , 2011, Physical review letters.

[28]  C. Simon,et al.  Entanglement over global distances via quantum repeaters with satellite links , 2014, 1410.5384.

[29]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[30]  Michael Niedermayr,et al.  Operation of a planar-electrode ion-trap array with adjustable RF electrodes , 2014 .

[31]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[32]  Austin G. Fowler,et al.  Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time , 2013, Quantum Inf. Comput..

[33]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[34]  R. V. Meter Quantum Networking: Van Meter/Quantum Networking , 2014 .

[35]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[36]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[37]  Harry Buhrman,et al.  Distributed Quantum Computing , 2003, MFCS.

[38]  Turid Rustad,et al.  Acknowledgements , 1996, Schizophrenia Research.

[39]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[40]  A. V. Gorshkov,et al.  Scalable architecture for a room temperature solid-state quantum information processor , 2010, Nature Communications.

[41]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[42]  Norbert Lütkenhaus,et al.  Ultrafast and Fault-Tolerant Quantum Communication over Long Distances , 2014 .

[43]  R. V. Meter,et al.  A Layered Architecture for Quantum Computing Using Quantum Dots , 2010 .

[44]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[45]  Avinatan Hassidim,et al.  Fast quantum byzantine agreement , 2005, STOC '05.

[46]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[47]  Ulrich Schmid,et al.  Arrays of open, independently tunable microcavities. , 2013, Optics express.

[48]  Rodney Van Meter,et al.  Interoperability in encoded quantum repeater networks , 2015 .

[49]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.