Ultrafast Laser Fabrication of Hybrid Micro‐ and Nano‐Structures in Semiconductor‐doped Borosilicate Glasses

Femtosecond (fs)-laser processing of CdSxSe1-x-doped borosilicate glasses was investigated to create hybrid multiscale structures consisting of semiconductor nanocrystals embedded in microscopic domains defined by the laser irradiation. Laser processing was carried out with both low (1 KHz) and high (1 MHz) repetition rate fs-lasers using pulse fluences between 2 and 2000 J/cm2 and sample scan speeds ranging from 0.05 to 4 mm/s. The samples were subsequently heat-treated at temperatures between 500 and 600°C and characterized using optical microscopy, electron microscopy, wave dispersive x-ray spectroscopy (WDS), and confocal fluorescence microscopy. For 1-KHz laser processing conditions, nanocrystal precipitation showed no significant distinction between the modified and unmodified regions in the sample. Using a 1-MHz pulse repetition rate laser, however, we introduced chemical inhomogeneity across microscopic modifications, forming three chemically distinct regions: sodium and potassium-rich, zinc rich, and silicon rich. These regions exhibited different semiconductor precipitation dynamics, with the sodium and potassium-rich region showing strong preferential precipitation of cadmium sulfo-selenide nanoparticles, thereby localizing quantum dot precipitation to these chemically defined microcrucibles in the glass.

[1]  S. Risbud,et al.  Micron size optically altered regions and nanocrystal formation in femtosecond laser processed CdSxSe1−x doped silicate glass , 2012 .

[2]  Masaaki Sakakura,et al.  Formation mechanism of element distribution in glass under femtosecond laser irradiation. , 2011, Optics letters.

[3]  Yves Bellouard,et al.  Femtosecond-laser generation of self-organized bubble patterns in fused silica. , 2011, Optics express.

[4]  K. Miura,et al.  Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. , 2010, Journal of the American Chemical Society.

[5]  Masaaki Sakakura,et al.  Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses , 2010 .

[6]  I. Sohn,et al.  Controlled Precipitation of Lead Sulfide Quantum Dots in Glasses Using the Femtosecond Laser Pulses , 2009 .

[7]  D. Zahn,et al.  Evidence for formation of Se molecular clusters during precipitation of CdSe1−xSx nanoparticles in glass , 2009 .

[8]  Yasuhiko Shimotsuma,et al.  Micromodification of element distribution in glass using femtosecond laser irradiation. , 2009, Optics letters.

[9]  Roberto Osellame,et al.  Micromachining of photonic devices by femtosecond laser pulses , 2008 .

[10]  K. Miura,et al.  Ion exchange in glass using femtosecond laser irradiation , 2008 .

[11]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[12]  S. Risbud,et al.  Energetics of CdSxSe1−x quantum dots in borosilicate glasses , 2007 .

[13]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[14]  C. Flytzanis Nonlinear optics in mesoscopic composite materials , 2005 .

[15]  K. Hirao,et al.  Fabrication of photonic crystals in ZnS-doped glass. , 2005, Optics letters.

[16]  J. S. Hayden,et al.  Fluorescence Spectroscopy of Color Centers Generated in Phosphate Glasses after Exposure to Femtosecond Laser Pulses , 2004 .

[17]  K. Hirao,et al.  Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses. , 2004, Optics express.

[18]  E. Mazur,et al.  Bulk heating of transparent materials using a high-repetition-rate femtosecond laser , 2003 .

[19]  Thomas R Huser,et al.  Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses , 2003 .

[20]  Eric Mazur,et al.  Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses , 2001 .

[21]  A. Gaeta,et al.  Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses. , 1999, Optics letters.

[22]  Vittorio Degiorgio,et al.  Nonlinear optical properties of semiconductor nanocrystals , 1998 .

[23]  Subhash H. Risbud,et al.  Selenium molecules and their possible role in deep emission from glasses doped with selenide nanocrystals , 1996 .

[24]  C. Flytzanis,et al.  Photoluminescence study of Schott commercial and experimental CdSSe-doped glasses: observation of surface states , 1991 .

[25]  J. Puls,et al.  Optical and electro-optical properties of II-VI quantum dots , 1991 .

[26]  Gibbs,et al.  State filling, Coulomb, and trapping effects in the optical nonlinearity of CdTe quantum dots in glass. , 1990, Physical review. B, Condensed matter.

[27]  S. Risbud,et al.  Quantum‐dot size‐distribution analysis and precipitation stages in semiconductor doped glasses , 1990 .

[28]  P. Roussignol,et al.  New results on optical phase conjugation in semiconductor-doped glasses , 1987 .

[29]  A. I. Ekimov,et al.  Quantum size effect in semiconductor microcrystals , 1985 .

[30]  L. Brus,et al.  Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution , 1983 .

[31]  A. Chadwick,et al.  Thermal Diffusion in Crystalline Solids , 1967 .