Nonlinear System Identification: Particle-Based Methods

[1]  N. Gordon,et al.  Optimal Estimation and Cramér-Rao Bounds for Partial Non-Gaussian State Space Models , 2001 .

[2]  Chung Bang Yun,et al.  Identification of Linear Structural Dynamic Systems , 1982 .

[3]  Eihab M. Abdel-Rahman,et al.  A PSO Accelerated Immune Particle Filter for Dynamic State Estimation , 2011, 2011 Canadian Conference on Computer and Robot Vision.

[4]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[5]  James B. Rawlings,et al.  Estimation of the disturbance structure from data using semidefinite programming and optimal weighting , 2009, Autom..

[6]  Alberto Corigliano,et al.  Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters , 2005 .

[7]  Euntai Kim,et al.  A New Particle Filter Inspired by Biological Evolution: Genetic Filter , 2007 .

[8]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[9]  Eleni Chatzi,et al.  Particle filter scheme with mutation for the estimation of time‐invariant parameters in structural health monitoring applications , 2013 .

[10]  Elaine Martin,et al.  Particle filters for state and parameter estimation in batch processes , 2005 .

[11]  G. Fraraccio,et al.  Identification and Damage Detection in Structures Subjected to Base Excitation , 2008 .

[12]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[13]  Satish Nagarajaiah,et al.  Time segmented least squares identification of base isolated buildings , 2004, Soil Dynamics and Earthquake Engineering.

[14]  Li Zhou,et al.  An adaptive extended Kalman filter for structural damage identification , 2006 .

[15]  Elias B. Kosmatopoulos,et al.  Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .

[16]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[17]  C. S. Manohar,et al.  Particle filters for structural system identification using multiple test and sensor data: A combined computational and experimental study , 2011 .

[18]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[19]  Rustem V. Shaikhutdinov,et al.  Bayesian State Estimation Method for Nonlinear Systems and Its Application to Recorded Seismic Response , 2006 .

[20]  Ngai Ming Kwok,et al.  Evolutionary particle filter: re-sampling from the genetic algorithm perspective , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[22]  A. Corigliano,et al.  Parameter identification in explicit structural dynamics: performance of the extended Kalman filter , 2004 .

[23]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[24]  Saeed Eftekhar Azam,et al.  Parallelized sigma-point Kalman filtering for structural dynamics , 2012 .

[25]  Wen-Jing Liu,et al.  Adaptive mutation particle filter based on diversity guidance , 2010, 2010 International Conference on Machine Learning and Cybernetics.

[26]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[27]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[28]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[29]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[30]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[31]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .