Saliency, Scale and Image Description

Many computer vision problems can be considered to consist of two main tasks: the extraction of image content descriptions and their subsequent matching. The appropriate choice of type and level of description is of course task dependent, yet it is generally accepted that the low-level or so called early vision layers in the Human Visual System are context independent.This paper concentrates on the use of low-level approaches for solving computer vision problems and discusses three inter-related aspects of this: saliency; scale selection and content description. In contrast to many previous approaches which separate these tasks, we argue that these three aspects are intrinsically related. Based on this observation, a multiscale algorithm for the selection of salient regions of an image is introduced and its application to matching type problems such as tracking, object recognition and image retrieval is demonstrated.

[1]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[2]  Carl R. Eklund The Antarctic Skua , 1964 .

[3]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  J. Galayda Edge Focusing , 1981, IEEE Transactions on Nuclear Science.

[5]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[6]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[7]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[8]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[9]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[10]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[11]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[13]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[14]  Rachid Deriche,et al.  Recovering and characterizing image features using an efficient model based approach , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Tony Lindeberg,et al.  Scale selection for differential operators , 1994 .

[16]  B. Julesz Dialogues on Perception , 1994 .

[17]  Bart M. ter Haar Romeny,et al.  Linear Scale-Space I: Basic Theory , 1994, Geometry-Driven Diffusion in Computer Vision.

[18]  Tony Lindeberg,et al.  Junction detection with automatic selection of detection scales and localization scales , 1994, Proceedings of 1st International Conference on Image Processing.

[19]  Martin Jägersand,et al.  Saliency Maps and Attention Selection in Scale and Spatial Coordinates: An Information Theoretic Approach , 1995, ICCV.

[20]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[21]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Michael Isard,et al.  The CONDENSATION Algorithm - Conditional Density Propagation and Applications to Visual Tracking , 1996, NIPS.

[23]  Baoyu Zheng,et al.  Digital mammography: mixed feature neural network with spectral entropy decision for detection of microcalcifications , 1996, IEEE Trans. Medical Imaging.

[24]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  B. M. Ter,et al.  Introduction to Scale-Space Theory : Multiscale Geometric Image Analysis , 1997 .

[26]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[27]  Henri Maître,et al.  Entropy and multiscale analysis: a new feature extraction algorithm for aerial images , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[28]  Timothy F. Cootes,et al.  Locating Salient Object Features , 1998, BMVC.

[29]  Cordelia Schmid,et al.  Comparing and evaluating interest points , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[30]  Timothy F. Cootes,et al.  Locating salient facial features using image invariants , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[31]  Farzin Mokhtarian,et al.  Robust Image Corner Detection Through Curvature Scale Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  S. Mallat A wavelet tour of signal processing , 1998 .

[33]  Fionn Murtagh,et al.  Multiscale entropy filtering , 1999, Signal Process..

[34]  Cordelia Schmid,et al.  Matching images with different resolutions , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[35]  James L. Crowley,et al.  Local Scale Selection for Gaussian Based Description Techniques , 2000, ECCV.

[36]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[37]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[38]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[39]  J. Koenderink,et al.  Receptive field families , 1990, Biological Cybernetics.

[40]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[41]  Rachid Deriche,et al.  A computational approach for corner and vertex detection , 1993, International Journal of Computer Vision.

[42]  Max A. Viergever,et al.  Linear scale-space , 1994, Journal of Mathematical Imaging and Vision.