A pulp mill benchmark problem for control: application of plantwide control design

Abstract A heuristic for design of plantwide control strategies is introduced and applied to the millwide control of a previously presented pulp mill benchmark. Two control strategies (decentralized control and unit-based model predictive control) are compared according to their capacity to reduce the total error and maximize the operating profits. The control strategies are studied through closed-loop simulations of the process including several disturbances and setpoint changes in the digester, oxygen reactor, bleach plant, recausticizing plant and lime kiln.

[1]  William L. Luyben,et al.  Plantwide control design procedure , 1997 .

[2]  Ronald K. Pearson,et al.  Low Order Empirical Modeling for Nonlinear Systems , 1994 .

[3]  JayHyung Lee,et al.  Nonlinear model predictive control of the Tennessee Eastman challenge process , 1995 .

[4]  Thomas J. McAvoy,et al.  Base control for the Tennessee Eastman problem , 1994 .

[5]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[6]  A. Banerjee,et al.  Control configuration design applied to the Tennessee Eastman plant-wide control problem , 1995 .

[7]  C. Georgakis,et al.  Plantwide regulatory control design procedure using a tiered framework , 1993 .

[8]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[9]  William L. Luyben,et al.  Design and control of a complex process involving two reaction steps, three distillation columns, and two recycle streams , 1995 .

[10]  John D. Perkins,et al.  Structural design for on‐line process optimization: II. Application to a simulated FCC , 1999 .

[11]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[12]  Manfred Morari,et al.  State-space interpretation of model predictive control , 1994, Autom..

[13]  P. S. Buckley,et al.  Techniques of Process Control , 1965 .

[14]  T. McAvoy,et al.  Nonlinear Inferential Parallel Cascade Control , 1996 .

[15]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part III: Optimal selection of secondary measurements within the framework of state estimation in the presence of persistent unknown disturbances , 1980 .

[16]  M. S. Gelormino,et al.  Model predictive control of multi-rate sampled-data systems: a state-space approach , 1992 .

[17]  Babatunde A. Ogunnaike,et al.  Process Dynamics, Modeling, and Control , 1994 .

[18]  Alex Zheng,et al.  Hierarchical procedure for plantwide control system synthesis , 1999 .

[19]  James B. Riggs,et al.  Nonlinear model based control of a recycle reactor process , 1995 .

[20]  William L. Luyben,et al.  Plantwide Process Control , 1998 .

[21]  A. Ichikawa,et al.  A Logical Structure for Process Control System Synthesis , 1978 .

[22]  Yaman Arkun,et al.  A general method to calculate input-output gains and the relative gain array for integrating processes , 1990 .

[23]  John D. Perkins,et al.  Structural design for on‐line process optimization: I. Dynamic economics of MPC , 1999 .

[24]  N. Lawrence Ricker,et al.  Decentralized control of the Tennessee Eastman Challenge Process , 1996 .

[25]  F. Doyle,et al.  Plantwide Control of the Fiber Line in a Pulp Mill , 2002 .

[26]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures , 1980 .

[27]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[28]  Sigurd Skogestad,et al.  Pairing Criteria for Decentralized Control of Unstable Plants , 1994 .

[29]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part II: Structural aspects and the synthesis of alternative feasible control schemes , 1980 .