Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors.

[1]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[2]  Noor Azuan Abu Osman,et al.  Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. , 2015, Journal of biomedical materials research. Part A.

[3]  I. Lin,et al.  Influence of CaO addition on the electrical properties of BaTiO3 ceramics , 1990 .

[4]  Baochang Cheng,et al.  Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes , 2011 .

[5]  Haitao Huang,et al.  F spots and domain patterns in rhombohedral PbZr0.90Ti0.10O3 , 2003 .

[6]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[7]  M. Greenblatt,et al.  Solid electrolyte film humidity sensor , 1998 .

[8]  Haitao Huang,et al.  Relaxor behavior in CaCu3Ti4O12 ceramics , 2006 .

[9]  Tai-Ping Sun,et al.  A device for skin moisture and environment humidity detection , 2008 .

[10]  Jarno Salonen,et al.  Characterization of thermally carbonized porous silicon humidity sensor , 2004 .

[11]  S. Yi,et al.  Humidity sensors using porous silicon layer with mesa structure , 2000 .

[12]  Milind V. Kulkarni,et al.  Synthesis and humidity sensing properties of conducting poly(N-methyl aniline) doped with different acids , 2006 .

[13]  Jing Wang,et al.  Influence of Doping on Humidity Sensing Properties of Nanocrystalline BaTiO3 , 1998 .

[14]  Di Wu,et al.  Preparation and Characterization of Relaxor Ferroelectric 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 by a Polymerizable Complex Method , 2009 .

[15]  M. Dresselhaus,et al.  Ultrahigh humidity sensitivity of graphene oxide , 2013, Scientific Reports.

[16]  Liu Jingbo,et al.  Preparation and characterization of Li+-modified CaxPb1−xTiO3 film for humidity sensor , 2001 .

[17]  Jing Wang,et al.  Study on dielectric properties of humidity sensing nanometer materials , 2005 .

[18]  Zubair Ahmad,et al.  A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring , 2013, Sensors.

[19]  Yin Zhao,et al.  The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor , 2011, Nanotechnology.

[20]  Ling Li Wang,et al.  Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array , 2013 .

[21]  W. Wang,et al.  Capacitive humidity-sensing properties of Zn2SiO4 film grown on silicon nanoporous pillar array , 2013 .

[22]  R. K. Kotnala,et al.  Microstructure-dependent humidity sensitivity of porous MgFe2O4–CeO2 ceramic , 2007 .

[23]  Chao-Yu Chung,et al.  High dielectric permittivity in Ca1-xBixTi1-xCrxO3 ferroelectric perovskite ceramics , 2004 .

[24]  Jing Wang,et al.  Preparation and Humidity Sensitivity of Multi-Layered Zirconia Thin Films by Sol–Gel Method , 2011 .

[25]  Dinesh Kumar,et al.  Valence compensated perovskite oxide system Ca1−xLaxTi1−xCrxO3 Part I Structure and dielectric behaviour , 2001 .

[26]  T. Troczynski,et al.  Sol–gel BaTiO3 thin film for humidity sensors , 2003 .

[27]  Jian Zhang,et al.  Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification , 2011 .

[28]  E. McCafferty,et al.  Adsorption of water vapour on α-Fe2O3 , 1971 .

[29]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[30]  Masayuki Morisawa,et al.  A plastic optical fibre sensor for real-time humidity monitoring , 2003 .

[31]  Tong Zhang,et al.  A humidity sensor based on KCl-doped SnO2 nanofibers , 2009 .

[32]  H. Chan,et al.  Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics , 2005 .

[33]  Young-Sik Hong,et al.  Structural and Dielectric Properties of PLZT Ceramics Modified with Lanthanide Ions , 2004 .

[34]  Chien-Tsung Wang,et al.  Humidity sensors based on silica nanoparticle aerogel thin films , 2005 .

[35]  Anna Musialik-Piotrowska,et al.  Combustion of volatile organic compounds in two-component mixtures over monolithic perovskite catalysts , 2000 .

[36]  Ziqiang Zhu,et al.  Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films , 2005 .

[37]  Rajiv Ranjan,et al.  Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1−x/4O3 ceramics , 2011 .

[38]  Tseung-Yuen Tseng,et al.  Humidity-sensitivity characteristics of CaTiO3 porous ceramics , 1990 .

[39]  Noboru Yamazoe,et al.  Ceramic humidity sensors , 1983 .

[40]  Ju-Hyun Yoo,et al.  Voltage gain characteristics of piezoelectric transformer using PbTiO3 system ceramics , 1999 .

[41]  Belinda Pingguan-Murphy,et al.  In Vitro Study of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human Fibroblast Cells , 2015, Scientific Reports.

[42]  Chunwen Sun,et al.  Ba1−xPrxCo1−yFeyO3−δ as cathode materials for low temperature solid oxide fuel cells , 2010 .

[43]  Giorgio Sberveglieri,et al.  Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate , 1994 .

[44]  Pedro M. Faia,et al.  Humidity sensing properties of a thick-film titania prepared by a slow spinning process , 2004 .

[45]  Chao-Yu Chung,et al.  High dielectric permittivity in Ca 1- x Bi x Ti 1- x Cr x O 3 ferroelectric perovskite ceramics , 2004 .

[46]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[47]  Zhiyong Ouyang,et al.  Porous ZnAl2O4 spinel nanorods: High sensitivity humidity sensors , 2013 .

[48]  Craig A. Grimes,et al.  Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films , 2002 .

[49]  Haibin Yang,et al.  Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing , 2008 .

[50]  Hanie Nadia Shasmin,et al.  Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors , 2016, Sensors.

[51]  Weiping Chen,et al.  A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs) , 2009, Sensors.

[52]  G. L. Sharma,et al.  Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal- electrochemical method , 2002 .

[53]  Yuuki Yazawa,et al.  Lunar Minerals and Their Resource Utilization with Particular Reference to Solar Power Satellites and Potential Roles for Humic Substances for Lunar Agriculture , 2012 .

[54]  Jing Wang,et al.  Humidity sensors based on composite material of nano-BaTiO3 and polymer RMX , 2002 .

[55]  John T.W. Yeow,et al.  A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating , 2010 .

[56]  Vojko Matko,et al.  Next Generation AT-Cut Quartz Crystal Sensing Devices , 2011, Sensors.

[57]  Tsuneharu Nitta,et al.  Humidity-Sensitive Electrical Conduction of MgCr2O4-TiO2 Porous Ceramics , 1980 .

[58]  Noor Azuan Abu Osman,et al.  Morphological Change of Heat Treated Bovine Bone: A Comparative Study , 2012, Materials.

[59]  Wendong Wang,et al.  Catalytic partial oxidation of methane over SrTiO3 with oxygen-permeable membrane reactor , 2010 .

[60]  Belinda Pingguan-Murphy,et al.  Design and Development of Potential Tissue Engineering Scaffolds from Structurally Different Longitudinal Parts of a Bovine-Femur , 2014, Scientific Reports.

[61]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[62]  C. Chung,et al.  Dielectric properties of valence compensated Ca1-xBixTi1-xCrxO3 perovskite prepared using the sol-gel process , 2008 .

[63]  Zhe-sheng Feng,et al.  A novel humidity sensor based on alumina nanowire films , 2012 .

[64]  Bernard Delmon,et al.  Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion , 2003 .

[65]  Ding-Yeong Wang,et al.  Synthesis and Characterization of Ilmenite-Type Cobalt Titanate Powder , 2010 .

[66]  Yiping Guo,et al.  Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics , 2003 .

[67]  Denis Donlagic,et al.  Sensor for high-air-humidity measurement , 1996 .

[68]  Jongman Cho,et al.  Role of Morphological Structure, Doping, and Coating of Different Materials in the Sensing Characteristics of Humidity Sensors , 2014, Sensors.

[69]  Ito Wataru,et al.  Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane , 2007 .

[70]  Yong Li,et al.  Effect of the pore size of TiO2 porous film on humidity sensitive properties of TiO2/NaPSS composite films , 2011 .

[71]  Huiqing Fan,et al.  Phase structure, microstructure and piezoelectric properties of perovskite (K0.5Na0.5)0.95Li0.05NbO3–Bi0.5(K0.15Na0.85)0.5TiO3 lead-free ceramics , 2010 .

[72]  Hyunchul Park,et al.  Capacitive humidity sensor design based on anodic aluminum oxide , 2009 .

[73]  Xinjian Li,et al.  Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array , 2012 .

[74]  Hiromichi Arai Semiconductive Humidity Sensor of Perovskite-Type Oxides. , 1984 .