Visual Identification and Extraction of Intrinsic Axes in High-Dimensional Data

Interactive axis extraction for high-dimensional data visualization has been demonstrated to be powerful in high-dimensional data exploring and understanding. The extracted axes help to yield new 2-D arrangements of data points, providing new insights into the data. However, the existing interfaces for extraction only support linear axes or non-linear axes without specific semantics. When the data points lie in a manifold, it is hard to capture intrinsic features of the manifold by either linear axes or non-linear axes without specific semantics. Furthermore, a dataset with complicated topology would contain holes and branches. While a branch often indicates a local trend, it may not make sense to project data points to an axis in a different branch. In this paper, we propose an interactive visual interface to identify and extract intrinsic axes in high-dimensional data. The system contains four major views. The topology view presents the skeleton-based topology of the dataset. The detail view provides a force-directed layout of a high-dimensional data and allows interactive extracting intrinsic axes. The characteristics of extracted axes are visualized in the intrinsic axes view. The projection view layouts data points aligning with extracted intrinsic axes. Case studies and comparative experiments demonstrate the usefulness of our visual analytics system.

[1]  Anthony K. H. Tung,et al.  LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets , 2018, IEEE Transactions on Visualization and Computer Graphics.

[2]  P. Y. Lum,et al.  Extracting insights from the shape of complex data using topology , 2013, Scientific Reports.

[3]  David J. Duke,et al.  Joint Contour Nets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[4]  Wei Chen,et al.  ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots , 2020, IEEE Transactions on Visualization and Computer Graphics.

[5]  Valerio Pascucci,et al.  Branching and Circular Features in High Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[7]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[8]  Wei Huang,et al.  Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data , 2016, 2016 IEEE Pacific Visualization Symposium (PacificVis).

[9]  Li Chen,et al.  Cluster-Based Visual Abstraction for Multivariate Scatterplots , 2018, IEEE Transactions on Visualization and Computer Graphics.

[10]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[11]  Ying Zhao,et al.  A survey of visualization for smart manufacturing , 2018, Journal of Visualization.

[12]  Wei Chen,et al.  A User Study on the Capability of Three Geo-Based Features in Analyzing and Locating Trajectories , 2019, IEEE Transactions on Intelligent Transportation Systems.

[13]  Le Gao,et al.  Exploring linear projections for revealing clusters, outliers, and trends in subsets of multi-dimensional datasets , 2018, J. Vis. Lang. Comput..

[14]  Xiong Li,et al.  A Collaboration Platform for Effective Task and Data Reporter Selection in Crowdsourcing Network , 2019, IEEE Access.

[15]  Zhiwen Zeng,et al.  Adaption Resizing Communication Buffer to Maximize Lifetime and Reduce Delay for WVSNs , 2019, IEEE Access.

[16]  Ingo Hotz,et al.  iPCA : An Interactive System for PCA-based Visual Analytics , 2008 .

[17]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[18]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[19]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[20]  Alex Endert,et al.  InterAxis: Steering Scatterplot Axes via Observation-Level Interaction , 2016, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jaegul Choo,et al.  iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[22]  Xiao Liu,et al.  A statistical approach to participant selection in location-based social networks for offline event marketing , 2019, Inf. Sci..

[23]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[24]  David J. Duke,et al.  Extracting Jacobi Structures in Reeb Spaces , 2014, EuroVis.

[25]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[26]  Feng Luo,et al.  Evaluating Multi-Dimensional Visualizations for Understanding Fuzzy Clusters , 2019, IEEE Transactions on Visualization and Computer Graphics.

[27]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[28]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[29]  Fang Liu,et al.  Visual Analytics for Spatial Clusters of Air-Quality Data , 2017, IEEE Computer Graphics and Applications.

[30]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[31]  Valerio Pascucci,et al.  Visual Exploration of High Dimensional Scalar Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[32]  Wei Chen,et al.  Visual subspace clustering based on dimension relevance , 2017, J. Vis. Lang. Comput..

[33]  Carla E. Brodley,et al.  Dis-function: Learning distance functions interactively , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[34]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[35]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[36]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[37]  Wei Chen,et al.  EOD Edge Sampling for Visualizing Dynamic Network via Massive Sequence View , 2018, IEEE Access.

[38]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[39]  Chris North,et al.  Observation-level interaction with statistical models for visual analytics , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[40]  Aaron Knoll,et al.  Visualizing Nuclear Scission through a Multifield Extension of Topological Analysis , 2012, IEEE Transactions on Visualization and Computer Graphics.

[41]  Chris North,et al.  Semantic interaction for visual text analytics , 2012, CHI.

[42]  Alex Endert,et al.  AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings , 2017, IEEE Transactions on Visualization and Computer Graphics.

[43]  Hans-Peter Kriegel,et al.  A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms , 2008, SSDBM.

[44]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[45]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[46]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[47]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[48]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[49]  Chris North,et al.  Semantics of Directly Manipulating Spatializations , 2013, IEEE Transactions on Visualization and Computer Graphics.

[50]  David J. Duke,et al.  Skeletons for distributed topological computation , 2015, FHPC@ICFP.

[51]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[52]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.