Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma

[1]  J. Moody,et al.  Ion and Electron Acoustic Bursts during Anti-Parallel Reconnection Driven by Lasers , 2022 .

[2]  H. Ji,et al.  Magnetic reconnection in the era of exascale computing and multiscale experiments , 2022, Nature Reviews Physics.

[3]  H. Ji,et al.  Pulse width dependence of magnetic field generation using laser-powered capacitor coils , 2021 .

[4]  J. Rodriguez,et al.  INTEGRAL discovery of a high-energy tail in the microquasar Cygnus X-3 , 2020, Astronomy & Astrophysics.

[5]  J. Dahlin,et al.  Prospectus on electron acceleration via magnetic reconnection , 2020 .

[6]  Xiaocan Li,et al.  Recent progress on particle acceleration and reconnection physics during magnetic reconnection in the magnetically-dominated relativistic regime , 2020, Physics of Plasmas.

[7]  D. Gary,et al.  Measurement of magnetic field and relativistic electrons along a solar flare current sheet , 2020, Nature Astronomy.

[8]  E. Parker,et al.  MAGNETIC RECONNECTION , 2020, Plasma Physics for Astrophysics.

[9]  J. Moody,et al.  Study of a magnetically driven reconnection platform using ultrafast proton radiography , 2019, Physics of Plasmas.

[10]  W. Theobald,et al.  A ten-inch manipulator (TIM) based fast-electron spectrometer with multiple viewing angles (OU-ESM). , 2019, The Review of scientific instruments.

[11]  W. Matthaeus,et al.  Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence , 2019, Physics of Plasmas.

[12]  M. Fujimoto,et al.  Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath , 2018, Nature.

[13]  Xiaocan Li,et al.  The Roles of Fluid Compression and Shear in Electron Energization during Magnetic Reconnection , 2018, 1801.02255.

[14]  A. Bhattacharjee,et al.  Relativistic-electron-driven magnetic reconnection in the laboratory , 2016, Physical Review E.

[15]  P. Cassak,et al.  A review of the 0.1 reconnection rate problem , 2017, Journal of Plasma Physics.

[16]  Xiaocan Li,et al.  Particle Acceleration during Magnetic Reconnection in a Low-beta Plasma , 2017 .

[17]  M. Hoshino,et al.  Magnetoluminescence , 2017, Space Science Reviews.

[18]  A. Beloborodov A Flaring Magnetar in FRB 121102? , 2017, 1702.08644.

[19]  J. Sarff,et al.  Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection. , 2016, Physical review letters.

[20]  C. Dermer,et al.  ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES , 2016, 1610.04569.

[21]  Z. Sheng,et al.  RELATIVISTIC ELECTRONS PRODUCED BY RECONNECTING ELECTRIC FIELDS IN A LASER-DRIVEN BENCH-TOP SOLAR FLARE , 2016 .

[22]  J. Drake,et al.  Parallel electric fields are inefficient drivers of energetic electrons in magnetic reconnection , 2016, 1607.03857.

[23]  H. Ji,et al.  Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current , 2016 .

[24]  T. Abel,et al.  Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas. , 2016, Physical review letters.

[25]  William Daughton,et al.  PARTICLE ACCELERATION AND PLASMA DYNAMICS DURING MAGNETIC RECONNECTION IN THE MAGNETICALLY DOMINATED REGIME , 2015, 1504.02193.

[26]  G. Werner,et al.  THE EXTENT OF POWER-LAW ENERGY SPECTRA IN COLLISIONLESS RELATIVISTIC MAGNETIC RECONNECTION IN PAIR PLASMAS , 2014, 1409.8262.

[27]  P. Chang,et al.  Magnetic reconnection between colliding magnetized laser-produced plasma plumes. , 2014, Physical review letters.

[28]  J. Drake,et al.  The mechanisms of electron heating and acceleration during magnetic reconnection , 2014, 1406.0831.

[29]  L. Sironi,et al.  RELATIVISTIC RECONNECTION: AN EFFICIENT SOURCE OF NON-THERMAL PARTICLES , 2014, 1401.5471.

[30]  M. Tarisien,et al.  Response functions of imaging plates to photons, electrons and 4He particles. , 2013, The Review of scientific instruments.

[31]  William Daughton,et al.  A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection , 2013 .

[32]  G. Werner,et al.  SIMULATIONS OF PARTICLE ACCELERATION BEYOND THE CLASSICAL SYNCHROTRON BURNOFF LIMIT IN MAGNETIC RECONNECTION: AN EXPLANATION OF THE CRAB FLARES , 2013, 1302.6247.

[33]  M. Shoup,et al.  A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA. , 2012, The Review of scientific instruments.

[34]  Nicole Vilmer,et al.  Solar flares and energetic particles , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  S. Krucker,et al.  Observational Aspects of Particle Acceleration in Large Solar Flares , 2012 .

[36]  Z. Sheng,et al.  Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction. , 2012, Physical review letters.

[37]  H. Ji,et al.  Phase Diagram for Magnetic Reconnection in Heliophysical, Astrophysical and Laboratory Plasmas , 2011, 1109.0756.

[38]  F. Longo,et al.  Gamma-Ray Flares from the Crab Nebula , 2010, Science.

[39]  M. Ajello,et al.  FUELING LOBES OF RADIO GALAXIES: STATISTICAL PARTICLE ACCELERATION AND THE EXTRAGALACTIC γ-RAY BACKGROUND , 2011, 1102.0774.

[40]  M. Trifoglio,et al.  Discovery of Powerful Gamma-Ray Flares from the Crab Nebula , 2011, Science.

[41]  D. Uzdensky Magnetic Reconnection in Extreme Astrophysical Environments , 2011, 1101.2472.

[42]  Jianqiang Zhu,et al.  Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers , 2010 .

[43]  Lindsay Glesener,et al.  MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE , 2010 .

[44]  Zulfikar Najmudin,et al.  Proton deflectometry of a magnetic reconnection geometry , 2010 .

[45]  D. Uzdensky,et al.  Reconnection in Marginally Collisionless Accretion Disk Coronae , 2008, 0804.4481.

[46]  K. Bowers,et al.  Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .

[47]  Ambrogio Fasoli,et al.  Generation of suprathermal electrons during sawtooth crashes in a tokamak plasma , 2007 .

[48]  M G Haines,et al.  Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. , 2006, Physical review letters.

[49]  M. Shay,et al.  Electron acceleration from contracting magnetic islands during reconnection , 2006, Nature.

[50]  William Daughton,et al.  Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions , 2006 .

[51]  R. Kulsrud,et al.  Physical origin of the quadrupole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection , 2006, astro-ph/0605309.

[52]  A. Orr,et al.  Non-thermal emission from AGN coronae , 2005, astro-ph/0503173.

[53]  P. Edwards,et al.  Chandra detection of hotspot and knots of 3C 303 , 2002, astro-ph/0211514.

[54]  S. Bale,et al.  Evidence for Electron Acceleration up to ~300 keV in the Magnetic Reconnection Diffusion Region of the Earth's Magnetotail , 2002 .

[55]  H. C. Spruit,et al.  Efficient acceleration and radiation in Poynting flux powered GRB outflows , 2002, astro-ph/0202387.

[56]  M. Hoshino,et al.  The Generation of Nonthermal Particles in the Relativistic Magnetic Reconnection of Pair Plasmas , 2014, 1402.7139.

[57]  Iku Shinohara,et al.  Suprathermal electron acceleration in magnetic reconnection , 2001 .

[58]  P. Savrukhin,et al.  Generation of suprathermal electrons during magnetic reconnection at the sawtooth crash and disruption instability in the T-10 tokamak. , 2001, Physical review letters.

[59]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[60]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[61]  H. Ji,et al.  Study of driven magnetic reconnection in a laboratory plasma , 1997 .

[62]  T. Kosugi,et al.  A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection , 1994, Nature.

[63]  Donald W. Phillion,et al.  Efficient Raman sidescatter and hot-electron production in laser-plasma interaction experiments , 1984 .

[64]  H. Azechi,et al.  Stimulated Raman scattering, two‐plasmon decay, and hot electron generation from underdense plasmas at 0.35 μm , 1984 .

[65]  A. Hillas The Origin of Ultra-High-Energy Cosmic Rays , 1984 .

[66]  H. Baldis,et al.  Hot Electron Generation by the Two-Plasmon Decay Instability in the Laser-Plasma Interaction at 10.6 μm , 1980 .