On periodic and chaotic regions in the Mandelbrot set
暂无分享,去创建一个
Gonzalo Alvarez | Miguel Romera | Gerardo Pastor | Fausto Montoya | G. Álvarez | F. Montoya | M. Romera | G. Pastor | David Arroyo | David Arroyo
[1] F. Montoya,et al. An approach to the ordering of one-dimensional quadratic maps , 1996 .
[2] R. Devaney. THE FRACTAL GEOMETRY OF THE MANDELBROT SET 2: HOW TO COUNT AND HOW TO ADD , 1995 .
[3] G. Álvarez,et al. Operating with external arguments in the Mandelbrot set antenna , 2002 .
[4] Peter H. Richter,et al. The Beauty of Fractals , 1988, 1988.
[5] Fausto Montoya Vitini,et al. Chaotic bands in the Mandelbrot set , 2004, Comput. Graph..
[6] G. Álvarez,et al. Misiurewicz point patterns generation in one-dimensional quadratic maps , 2001 .
[7] B. Mandelbrot. FRACTAL ASPECTS OF THE ITERATION OF z →Λz(1‐ z) FOR COMPLEX Λ AND z , 1980 .
[8] J. Hale,et al. Dynamics and Bifurcations , 1991 .
[9] A. Douady,et al. Étude dynamique des polynômes complexes , 1984 .
[10] G. Álvarez,et al. External arguments for the chaotic bands calculation in the Mandelbrot set , 2005 .
[11] Gonzalo Álvarez,et al. Shrubs in the Mandelbrot Set Ordering , 2003, Int. J. Bifurc. Chaos.
[12] F. Montoya,et al. Harmonic structure of one-dimensional quadratic maps , 1997 .
[13] B. Mandelbrot. On the quadratic mapping z→z2-μ for complex μ and z: The fractal structure of its M set, and scaling , 1983 .
[14] F. Montoya,et al. Misiurewicz points in one-dimensional quadratic maps , 1996 .