The upper ionospheres of Jupiter and Saturn

Abstract We use a 1-D chemical diffusive model, in conjunction with the measured neutral atmospheric structure, to analyze the Voyager RSS electron density, n e , profiles for the ionospheres of Jupiter and Saturn. As with previous studies we find serious difficulties in explaining the n e measurements. The model calculates ionospheres for both Jupiter and Saturn with n e peaks of ∼ 10 times the measured peaks at altitudes which are ∼ 900–1000 km lower than the altitude of peaks in the RSS electron densities. Based on our knowledge of neutral atmospheric structure, ionization sources, and known recombination mechanisms it seems that, vibrational excitation of H 2 must play some role in the conversion of slowly radiatively recombining H + ions to the relatively more rapidly recombining H 2 + and H 3 + ions. In addition, vertical ion flow induced by horizontal neutral winds or electric fields probably also play some role in maintaining the plasma peaks observed both for Jupiter and Saturn to be at high altitudes. For the ionosphere of Saturn, the electron densities are affected by a putative influx of H 2 O molecules, Φ H 2 O , from the rings. To reproduce the RSS V2 exit n e results model requires an influx of Φ H 2 O ∼ 2 × 10 7 molecules cm −2 s −1 without invoking H 2f vibrational excitation. To maintain the model n e peak at the measured altitude vertical plasma drift maintained by meridional winds or vertical electric fields is required. The amounts of H 2 O are consistent with earlier estimates of Connerney and Waite (1984) and do not violate any observational constraints.

[1]  L. Capone,et al.  The ionospheres of Saturn, Uranus, and Neptune , 1977 .

[2]  R. Hudson CRITICAL REVIEW OF ULTRAVIOLET PHOTOABSORPTION CROSS SECTIONS FOR MOLECULES OF ASTROPHYSICAL AND AERONOMIC INTEREST. , 1971 .

[3]  Siegfried Bauer,et al.  Physics of Planetary Ionospheres , 1973 .

[4]  J. McConnell,et al.  Vibrationally excited H2 in the upper atmosphere of Saturn , 1990 .

[5]  R. Johnsen Microwave afterglow measurements of the dissociative recombination of molecular ions with electrons , 1987 .

[6]  V. Anicich,et al.  A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds , 1986 .

[7]  J. McConnell,et al.  H3 + in the Jovian ionosphere , 1987 .

[8]  P. Woiceshyn,et al.  The Pioneer 11 radio occultation measurements of the Jovian ionosphere , 1976 .

[9]  Srikanta P. R. Kumar,et al.  Altitude variation of EUV emissions and evidence for proton precipitation at low latitudes in the Saturnian atmosphere , 1986 .

[10]  J. Mitchell,et al.  Production of H3+ ions with low internal energy for studies of dissociative recombination , 1986 .

[11]  J. Logan,et al.  Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source , 1978 .

[12]  G. E. Wood,et al.  Radio Science with Voyager at Jupiter: Initial Voyager 2 Results and a Voyager 1 Measure of the Io Torus , 1979, Science.

[13]  J. McConnell,et al.  A New look at the ionosphere of Jupiter in light of the UVS occultation results , 1982 .

[14]  J. Connerney,et al.  New model of Saturn's ionosphere with an influx of water from the rings , 1984, Nature.

[15]  J. McConnell,et al.  The dependence of electroglow on the solar flux , 1987 .

[16]  R. Chen Saturn's ionosphere: A corona of ice particles? , 1983 .

[17]  张哉根,et al.  Leu-M , 1991 .

[18]  Thomas E. Cravens,et al.  Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere , 1983 .

[19]  W. Huebner,et al.  A model of comet comae. I. Gas-phase chemistry in one dimension. , 1978 .

[20]  S. Atreya,et al.  Jupiter - Structure and composition of the upper atmosphere , 1981 .

[21]  M. McElroy,et al.  The ionospheres of the major planets , 1973 .

[22]  R. H. Hobbs,et al.  Low-temperature dissociative recombination of e+H3+ , 1984 .

[23]  S. Atreya,et al.  An interpretation of the Voyager measurement of jovian electron density profiles , 1979, Nature.

[24]  T. Amano The dissociative recombination rate coefficients of H+3, HN+2, and HCO+ , 1990 .

[25]  R. Schunk,et al.  Ionospheres of the terrestrial planets , 1980 .

[26]  E. Grün,et al.  Some consequences of meteoroid impacts on Saturn's rings , 1983 .

[27]  J. H. Waite,et al.  Current review of the Jupiter, Saturn, and Uranus ionospheres , 1987 .

[28]  G. F. Lindal,et al.  Structure of the Ionosphere and Atmosphere of Saturn from Pioneer 11 Saturn Radio Occultation , 1980 .

[29]  John E. P. Connerney,et al.  The magnetic field of Jupiter: A generalized inverse approach , 1981 .

[30]  T. Cravens Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter , 1987 .

[31]  R. Johnsen,et al.  Measurements of Recombination of Electrons with H3+ and H5+ Ions , 1973 .

[32]  M. Shimizu Strong interaction between the ring system and the ionosphere of saturn , 1980 .

[33]  R. Prangé,et al.  Modeling the precipitation flux in the Jovian auroral zones: 1. The model and its application to the UV auroral emissions , 1991 .

[34]  J. Waite,et al.  Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn , 1984 .

[35]  D. Shemansky An explanation for the H Ly α longitudinal asymmetry in the equatorial spectrum of Jupiter: An outcrop of paradoxical energy deposition in the exosphere , 1985 .

[36]  Roger V. Yelle,et al.  Vibrationally excited H2 in the outer planets thermosphere: Fluorescence in the Lyman and Werner bands , 1991 .

[37]  M. McElroy,et al.  The F2-layer at middle latitudes , 1970 .

[38]  Sushil K. Atreya,et al.  Book-Review - Atmospheres and Ionospheres of the Outer Planets and Their Satellites , 1986 .

[39]  M. Combes,et al.  A determination of the composition of the Saturnian stratosphere using the IUE , 1983 .

[40]  G. F. Lindal,et al.  The atmosphere of Saturn - an analysis of the Voyager radio occultation measurements , 1985 .

[41]  S. Atreya,et al.  Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment , 1981 .

[42]  J. McConnell,et al.  Saturn's upper atmosphere from the Voyager 2 Euv solar and stellar occultations , 1983 .

[43]  K. H. Tan,et al.  Absolute oscillator strengths (10–60 eV) for the photoabsorption, photoionisation and fragmentation of H20s , 1978 .

[44]  D. Shemansky,et al.  The Saturn spectrum in the EUV‐electron excited hydrogen , 1983 .

[45]  S. Atreya,et al.  Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the Saturnian upper atmosphere , 1982 .

[46]  N. Adams,et al.  Dissociative recombination coefficients for H3+, HCO+, N2H+, and CH5+ at low temperature: interstellar implications , 1984 .

[47]  A. Kliore,et al.  The Pioneer 10 radio occultation measurements of the ionosphere of Jupiter , 1975 .

[48]  Jonathan Tennyson,et al.  Infrared emissions of H3(+) in the atmosphere of Jupiter in the 2. 1 and 4. 0 micron region , 1990 .

[49]  G. Ballester,et al.  Jovian H2 dayglow emission (1978–1989) , 1990 .

[50]  S. Atreya,et al.  Saturn ionosphere: theoretical interpretation , 1981, Nature.

[51]  J. McConnell,et al.  Airglow from Jupiter's nightside and crescent: Ultraviolet spectrometer observations from Voyager 2 , 1980 .

[52]  G. Smith,et al.  The implication for the presence of a magnetosphere on Uranus in the relationship of EUV and radio emission , 1986 .

[53]  J. Fox,et al.  The Jovian ionospheric E region , 1991 .

[54]  J. H. Waite,et al.  Detection of H3+ on Jupiter , 1989, Nature.

[55]  T. Amano Is the dissociative recombination of H3+ really slow? A new spectroscopic measurement of the rate constant , 1988 .

[56]  G. D. Carney,et al.  H3 +: Abinitio calculation of the vibration spectrum , 1976 .

[57]  G. E. Wood,et al.  Radio Science with Voyager 1 at Jupiter: Preliminary Profiles of the Atmosphere and Ionosphere , 1979, Science.

[58]  D. Jewitt The rings of Jupiter , 1982 .

[59]  R. Yelle H2 emissions from the outer planets , 1988 .

[60]  Paul N. Romani,et al.  The upper atmosphere of Uranus: EUV occultations observed by Voyager 2 , 1987 .

[61]  Sen,et al.  Merged-beam studies of the dissociative recombination of H3+ ions with low internal energy. , 1988, Physical review. A, General physics.

[62]  T. Oka,et al.  Observations of the 4 micron fundamental band of H3(+) in Jupiter , 1990 .