A wide-range algorithm for minimal triangulation from an arbitrary ordering

We present a new algorithm, called LB-Triang, which computes minimal triangulations. We give both a straightforward O(nm^') time implementation and a more involved O(nm) time implementation, thus matching the best known algorithms for this problem. Our algorithm is based on a process by Lekkerkerker and Boland for recognizing chordal graphs which checks in an arbitrary order whether the minimal separators contained in each vertex neighborhood are cliques. LB-Triang checks each vertex for this property and adds edges whenever necessary to make each vertex obey this property. As the vertices can be processed in any order, LB-Triang is able to compute any minimal triangulation of a given graph, which makes it significantly different from other existing triangulation techniques. We examine several interesting and useful properties of this algorithm, and give some experimental results.

[1]  Andreas Parra,et al.  How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.

[2]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[3]  A. Berry Désarticulation d'un graphe , 1998 .

[4]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[5]  Ioan Todinca Aspects algorithmiques des triangulations minimales des graphes , 1999 .

[6]  Alan George,et al.  The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..

[7]  Pinar Heggernes,et al.  Recognizing Weakly Triangulated Graphs by Edge Separability , 2000, Nord. J. Comput..

[8]  Barry W. Peyton,et al.  Maximum Cardinality Search for Computing Minimal Triangulations of Graphs , 2004, Algorithmica.

[9]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[10]  G. Dirac On rigid circuit graphs , 1961 .

[11]  Anne Berry,et al.  A wide-range efficient algorithm for minimal triangulation , 1999, SODA '99.

[12]  Elias Dahlhaus,et al.  Minimal Elimination Ordering Inside a Given Chordal Graph , 1997, WG.

[13]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[14]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[15]  Pinar Heggernes,et al.  Maximum Cardinality Search for Computing Minimal Triangulations , 2002, WG.

[16]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[17]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[18]  Pinar Heggernes,et al.  Efficient Implementation of a Minimal Triangulation Algorithm , 2002, ESA.

[19]  Jeremy P. Spinrad,et al.  Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .

[20]  D. Rose Triangulated graphs and the elimination process , 1970 .

[21]  Daniel H. Huson,et al.  Obtaining highly accurate topology estimates of evolutionary trees from very short sequences , 1999, RECOMB.

[22]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[23]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[24]  Pinar Heggernes,et al.  A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..

[25]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[26]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[27]  Alain Cournier Sur quelques algorithmes de décomposition de graphes , 1993 .

[28]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[29]  Joseph W. H. Liu,et al.  Equivalent sparse matrix reordering by elimination tree rotations , 1988 .

[30]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[31]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[32]  Barry W. Peyton,et al.  Minimal Orderings Revisited , 1999, SIAM J. Matrix Anal. Appl..

[33]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[34]  J. Spinrad,et al.  Between O(nm) and O(nα) , 2003, SODA '03.

[35]  Fan Chung Graham,et al.  Chordal Completions of Planar Graphs , 1994, J. Comb. Theory, Ser. B.

[36]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[37]  T. Ohtsuki,et al.  Minimal triangulation of a graph and optimal pivoting order in a sparse matrix , 1976 .