Terrestrial biosphere changes over the last 120 kyr

A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 kaBP, and between 60 and 65 kaBP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ 13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ 13C based on modelled land carbon storage, and palaeo-archives of ocean δ 13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ 13 C changes.

[1]  J. Singarayer,et al.  Interhemispheric dynamics of the African rainbelt during the late Quaternary , 2015 .

[2]  Maurizio Santoro,et al.  Global covariation of carbon turnover times with climate in terrestrial ecosystems , 2014, Nature.

[3]  B. Emerson,et al.  Cryptic or mystic? Glacial tree refugia in northern Europe. , 2013, Trends in ecology & evolution.

[4]  K. Cobb,et al.  Varied Response of Western Pacific Hydrology to Climate Forcings over the Last Glacial Period , 2013, Science.

[5]  D. Hodell,et al.  Late Pleistocene Climate in the Central American Lowlands , 2013 .

[6]  Andy Ridgwell,et al.  Glacial-Interglacial Variability in Atmospheric CO2 , 2013 .

[7]  S. Lycett,et al.  Late Pleistocene climate change and the global expansion of anatomically modern humans , 2012, Proceedings of the National Academy of Sciences.

[8]  K. Lambeck,et al.  Ice Volume and Sea Level During the Last Interglacial , 2012, Science.

[9]  T. Stocker,et al.  Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw , 2012, Proceedings of the National Academy of Sciences.

[10]  Thomas F. Stocker,et al.  Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores , 2012, Science.

[11]  Mark Brenner,et al.  Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years , 2012 .

[12]  Jonathan M. Gregory,et al.  The last glacial cycle: transient simulations with an AOGCM , 2012, Climate Dynamics.

[13]  P. Ciais,et al.  Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum , 2012 .

[14]  Robin S. Smith,et al.  The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA , 2011 .

[15]  Philip B. Holden,et al.  Precessional forcing of tropical vegetation carbon storage , 2011 .

[16]  P. A. Baker,et al.  A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru) , 2011 .

[17]  I. Prentice,et al.  Global vegetation and terrestrial carbon cycle changes after the last ice age. , 2011, The New phytologist.

[18]  M. Bush,et al.  Nonlinear climate change and Andean feedbacks: an imminent turning point? , 2010 .

[19]  B. Hoskins,et al.  Some physical drivers of changes in the winter storm tracks over the North Atlantic and Mediterranean during the Holocene , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  S. Harrison,et al.  Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period , 2010 .

[21]  N. Combourieu-Nebout,et al.  Millennial-scale variability during the last glacial in vegetation records from Europe , 2010 .

[22]  A. Lézine,et al.  Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial , 2010 .

[23]  H. Takahara,et al.  Millennial-scale variability in vegetation records from the East Asian Islands: Taiwan, Japan and Sakhalin , 2010 .

[24]  R. Anderson,et al.  Millennial-scale variability during the last glacial in vegetation records from North America , 2010 .

[25]  G. Leduc,et al.  Changes in Eastern Pacific ocean ventilation at intermediate depth over the last 150 kyr BP , 2010 .

[26]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[27]  E. Michel,et al.  Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation , 2010 .

[28]  Paul J. Valdes,et al.  High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr , 2010 .

[29]  G. Henderson,et al.  A synthesis of marine sediment core δ 13 C data over the last 150 000 years , 2009 .

[30]  Jean-Claude Dutay,et al.  Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum , 2009 .

[31]  M. Claussen,et al.  Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity , 2009 .

[32]  F. Joos,et al.  Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core , 2009, Nature.

[33]  Sandy P. Harrison,et al.  Ecosystem effects of CO 2 concentration: evidence from past climates , 2009 .

[34]  M. Leng,et al.  Late Quaternary vegetation dynamics in a biodiversity hotspot, the Uluguru Mountains of Tanzania , 2009, Quaternary Research.

[35]  M. Ledru,et al.  Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial , 2009 .

[36]  T. Hill,et al.  A late Quaternary pollen sequence from Mfabeni Peatland, South Africa: Reconstructing forest history in Maputaland , 2008, Quaternary Research.

[37]  E. Novenko,et al.  Eemian and Early Weichselian vegetation and climate history in Central Europe: A case study from the Klinge section (Lusatia, eastern Germany) , 2008 .

[38]  H. Elderfield,et al.  Indian Ocean Circulation and Productivity during the Last Glacial Cycle , 2008 .

[39]  P. Tarasov,et al.  Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms , 2008 .

[40]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[41]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[42]  M. Bush,et al.  Glacial-Interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru) , 2008 .

[43]  Xiaohua Shao,et al.  Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years , 2008, Nature.

[44]  A. Ballantyne,et al.  Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project , 2007, Quaternary Research.

[45]  A. Timmermann,et al.  Simulation of the Last 21 000 Years Using Accelerated Transient Boundary Conditions , 2007 .

[46]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[47]  R. Anderson,et al.  Orbital- and millennial-scale vegetation and climate changes of the past 225 ka from Bear Lake, Utah-Idaho (USA) , 2007 .

[48]  N. Porch,et al.  A high‐resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, southeastern highlands of Australia , 2007 .

[49]  D. Schrag,et al.  Coccolith chemistry reveals secular variations in the global ocean carbon cycle , 2007 .

[50]  H. Pälike,et al.  The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends , 2006 .

[51]  W. Peltier,et al.  Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record , 2006 .

[52]  B. C. Hansen,et al.  Evidence for warm wet Heinrich events in Florida , 2006 .

[53]  E. Rohling,et al.  Underlying causes for long-term global ocean δ13C fluctuations over the last 1.20 Myr , 2006 .

[54]  A. Vernal,et al.  Vegetation and climate of the last interglacial on Baffin Island, Arctic Canada , 2006 .

[55]  T. Stocker,et al.  Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores , 2005, Science.

[56]  J. Stevenson,et al.  A Comparison of late Quaternary Forest Changes in New Caledonia and Northeastern Australia , 2005, Quaternary Research.

[57]  A. Hogg,et al.  Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere , 2005, Nature.

[58]  J. Jouzel,et al.  GRIP Deuterium Excess Reveals Rapid and Orbital-Scale Changes in Greenland Moisture Origin , 2005, Science.

[59]  A. Velichko,et al.  Vegetation and climate changes during the Eemian interglacial in Central and Eastern Europe: comparative analysis of pollen data , 2005 .

[60]  C. Zweck,et al.  Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity , 2005 .

[61]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[62]  P. A. Baker,et al.  Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago , 2005, Quaternary Research.

[63]  O. Borisova Vegetation and climate changes at the eemian/weichselian transition : new palynological data from central Russian plain , 2005 .

[64]  N. Shackleton,et al.  The Duration of Forest Stages in Southern Europe and Interglacial Climate Variability , 2004, Science.

[65]  Sandy P. Harrison,et al.  Pollen‐based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr BP , 2004 .

[66]  H. Fischer,et al.  Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition , 2004 .

[67]  Paul J. Valdes,et al.  Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum , 2004 .

[68]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[69]  H. Behling,et al.  Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil , 2004 .

[70]  M. Frogley,et al.  Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period , 2004 .

[71]  G. Farquhar,et al.  13C discrimination during CO2 assimilation by the terrestrial biosphere , 1994, Oecologia.

[72]  Sandy P. Harrison,et al.  Climate change and Arctic ecosystems: 2. Modeling, paleodata‐model comparisons, and future projections , 2003 .

[73]  Sandy P. Harrison,et al.  Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations , 2003 .

[74]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[75]  Jian Xu,et al.  Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event , 2003 .

[76]  J. Pross,et al.  Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record , 2003, Quaternary Research.

[77]  J. Kaplan,et al.  The stable carbon isotope composition of the terrestrial biosphere: Modeling at scales from the leaf to the globe , 2002 .

[78]  Victor Brovkin,et al.  Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER‐2 model , 2002 .

[79]  S. Sosa-Nájera,et al.  Mid- to Late-Wisconsin Pollen Record of San Felipe Basin, Baja California , 2002, Quaternary Research.

[80]  T. Heaton,et al.  Duration of Last Interglacial Conditions in Northwestern Greece , 2002, Quaternary Research.

[81]  L. François,et al.  The global carbon cycle and its changes over glacial–interglacial cycles , 2002 .

[82]  R. Zeebe Glacial/interglacial variations in atmospheric CO2 , 2002 .

[83]  Antje H L Voelker,et al.  Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database , 2001 .

[84]  D. Penny A 40,000 year palynological record from north-east Thailand; implications for biogeography and palaeo-environmental reconstruction , 2001 .

[85]  T. Stocker,et al.  Atmospheric CO2 concentrations over the last glacial termination. , 2001, Science.

[86]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[87]  D. Magri,et al.  Orbital signatures and long-term vegetation patterns in the Mediterranean , 2000 .

[88]  R. Bonnefille,et al.  Pollen-inferred precipitation time-series from equatorial mountains , 2000 .

[89]  E. Boyle,et al.  Glacial/interglacial variations in atmospheric carbon dioxide , 2000, Nature.

[90]  U. Müller A Late-Pleistocene pollen sequence from the Jammertal, south-western Germany with particular reference to location and altitude as factors determining Eemian forest composition , 2000 .

[91]  R. S. Thompson,et al.  Biomes of western North America at 18,000, 6000 and 0 14C yr bp reconstructed from pollen and packrat midden data , 2000 .

[92]  T. Webb,,et al.  Late Quaternary biomes of Canada and the eastern United States , 2000 .

[93]  P. Tarasov,et al.  Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia , 2000 .

[94]  S. Harrison,et al.  Pollen‐based reconstructions of Japanese biomes at 0, 6000 and 18,000 14C  yr  bp , 2000 .

[95]  J. Guiot,et al.  Pollen‐based biome reconstruction for southern Europe and Africa 18,000 yr bp , 2000 .

[96]  D. Jolly,et al.  Mid‐Holocene and glacial‐maximum vegetation geography of the northern continents and Africa , 2000 .

[97]  Jun Liu,et al.  Palaeovegetation of China: a pollen data‐based synthesis for the mid‐Holocene and last glacial maximum , 2000 .

[98]  T. Stocker,et al.  Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome Ice Core, Antarctica , 2000 .

[99]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[100]  V. Pope,et al.  The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 , 2000 .

[101]  B. C. Hansen,et al.  Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago , 2009 .

[102]  D. Magri,et al.  Late Pleistocene and Holocene pollen stratigraphy at Lago di Vico, central Italy , 1999 .

[103]  Jörg Keller,et al.  Rapid environmental changes in southern Europe during the last glacial period , 1999, Nature.

[104]  D. Magri Late Quaternary vegetation history at Lagaccione near Lago di Bolsena (central Italy) , 1999 .

[105]  Beerling New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene , 1999 .

[106]  G. Ramstein,et al.  Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times , 1999 .

[107]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[108]  L. Scott Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater , 1999 .

[109]  Martin Wahlen,et al.  Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica , 1999, Nature.

[110]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[111]  S. Harrison,et al.  Present‐day and mid‐Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia , 1998 .

[112]  F. Gasse,et al.  A 40,000-yr Pollen and Diatom Record from Lake Tritrivakely, Madagascar, in the Southern Tropics , 1998, Quaternary Research.

[113]  I. Prentice,et al.  Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years , 1998 .

[114]  M. Talbot,et al.  A revised 30,000-year paleoclimatic and paleohydrologic history of Lake Albert, East Africa , 1997 .

[115]  J. Ehleringer,et al.  C4 photosynthesis, atmospheric CO2, and climate , 1997, Oecologia.

[116]  P. Bartlein,et al.  Vegetation and climate change in northwest America during the past 125 kyr , 1997, Nature.

[117]  A. Hamilton,et al.  Late Pleistocene and Holocene History at Mubwindi Swamp, Southwest Uganda , 1997, Quaternary Research.

[118]  G. Farquhar,et al.  Terrestrial carbon-storage from the last glacial maximum to the present , 1996 .

[119]  M. Fournier,et al.  The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate , 1996 .

[120]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[121]  B Huntley,et al.  Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka , 1996 .

[122]  T. Crowley Ice Age terrestrial carbon changes revisited , 1995 .

[123]  H. Cattle,et al.  Modelling Arctic climate change , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[124]  G. Farquhar,et al.  Terrestrial carbon storage at the LGM , 1994, Nature.

[125]  D. Hodell,et al.  Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36 ka , 1994 .

[126]  M. Servant,et al.  Localisation de la forêt d'Araucaria du Brésil au cours de L'Holocène. Implications paléoclimatiques , 1994 .

[127]  R. Anderson,et al.  A 35,000 Year Vegetation and Climate History from Potato Lake, Mogollon Rim, Arizona , 1993, Quaternary Research.

[128]  Michael Lautenschlager,et al.  Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum , 1993 .

[129]  J. Vogel,et al.  The Pretoria Saltpan: a 200,000 year Southern African lacustrine sequence , 1993 .

[130]  M. Ledru Late Quaternary Environmental and Climatic Changes in Central Brazil , 1993, Quaternary Research.

[131]  W. Broecker,et al.  What Caused the Glacial to Interglacial CO2 Change , 1993 .

[132]  Markus Leuenberger,et al.  Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core , 1992, Nature.

[133]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[134]  W. Cramer,et al.  The IIASA database for mean monthly values of temperature , 1991 .

[135]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[136]  P. Tinker,et al.  Soil organic matter and biology in relation to climate chance. , 1990 .

[137]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[138]  Laurent Labeyrie,et al.  Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation , 1988 .

[139]  L. Slott The Pretoria Saltpan: a unique source of quaternary palaeoenvironmental information , 1988 .

[140]  C. Lorius,et al.  Vostok ice core provides 160,000-year record of atmospheric CO2 , 1987, Nature.

[141]  J. D. Hays,et al.  Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy , 1987, Quaternary Research.

[142]  A. Kershaw Climatic change and Aboriginal burning in north-east Australia during the last two glacial/interglacial cycles , 1986, Nature.

[143]  T. A. Boden,et al.  Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018) , 1986 .

[144]  B. C. Hansen,et al.  Pollen studies in the Junín area, central Peruvian Andes , 1984 .

[145]  B. Leyden Guatemalan forest synthesis after Pleistocene aridity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[146]  W. Watts,et al.  Paleoecological Studies at Lake Patzcuaro on the West-Central Mexican Plateau and at Chalco in the Basin of Mexico , 1982, Quaternary Research.

[147]  E. Grüger Die Seeablagerungen vom Samerberg/Obb. und ihre Stellung im Jungpleistozän , 1979 .

[148]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[149]  N. Shackleton Carbon-13 in Uvigerina: Tropical Rainforest History and the Equatorial Pacific Carbonate Dissolution Cycles , 1977 .

[150]  A. Malahoff,et al.  The fate of fossil fuel Co2 in the oceans , 1977 .

[151]  A. Smit,et al.  PALYNOLOGY OF THE MIDDLE PART (30–78 METRES) OF THE 120 M DEEP SECTION IN NORTHERN GREECE (MACEDONIA) , 1976 .

[152]  T. Wijmstra PALYNOLOGY OF THE FIRST 30 METRES OF A 120 M DEEP SECTION IN NORTHERN GREECE , 1969 .