Multiple quantum phase transitions of different nature in the topological kagome magnet Co3Sn2−xInxS2

[1]  A. Amato,et al.  Nodeless kagome superconductivity in LaRu3Si2 , 2021, Physical Review Materials.

[2]  J. Mitchell,et al.  Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. , 2020, Science advances.

[3]  Tay-Rong Chang,et al.  Enhanced anomalous Hall effect in the magnetic topological semimetal Co3Sn2−xInxS2 , 2020, 2003.02412.

[4]  N. Ghimire,et al.  Topology and correlations on the kagome lattice , 2020, Nature materials.

[5]  S. Tsirkin,et al.  Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet , 2020, Nature Communications.

[6]  K. Le Hur,et al.  Magnetic topological kagome systems , 2019, Physical Review Research.

[7]  A. Amato,et al.  Dual nature of magnetism in MnSi , 2019, Physical Review Research.

[8]  J. Long,et al.  Exchange biased anomalous Hall effect driven by frustration in a magnetic kagome lattice , 2019, Nature Communications.

[9]  C. Felser,et al.  Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2 , 2017, Physical Review B.

[10]  Yugui Yao,et al.  Pressure-tunable large anomalous Hall effect of the ferromagnetic kagome-lattice Weyl semimetal Co3Sn2S2 , 2019, Physical Review B.

[11]  Q. Sheng,et al.  Probing the quantum phase transition in Mott insulator BaCoS2 tuned by pressure and Ni substitution , 2019, Physical Review Materials.

[12]  S. Tsirkin,et al.  Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet , 2019, Nature Physics.

[13]  R. Weihrich,et al.  Von der Laborpresse zu Spins mit riesigen Effekten , 2018, Angewandte Chemie.

[14]  Shuang Jia,et al.  Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet , 2018, Nature.

[15]  C. Felser,et al.  Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2 , 2017, Physical Review B.

[16]  H. Weng,et al.  Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions , 2017, Nature Communications.

[17]  Liang Fu,et al.  Massive Dirac fermions in a ferromagnetic kagome metal , 2017, Nature.

[18]  C. Felser,et al.  Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal , 2017 .

[19]  Shou-Cheng Zhang,et al.  Topological states of condensed matter. , 2017, Nature materials.

[20]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[21]  Thomas Wolf,et al.  Restoration of quantum critical behavior by disorder in pressure-tuned (Mn,Fe)Si , 2017, npj Quantum Materials.

[22]  A. Stoykov,et al.  The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam. , 2017, The Review of scientific instruments.

[23]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[24]  A. Amato,et al.  High pressure research using muons at the Paul Scherrer Institute , 2016, 1603.08847.

[25]  Takashi U. Ito,et al.  Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning , 2016, Nature Communications.

[26]  A. Amato,et al.  High-pressure magnetic state of MnP probed by means of muon-spin rotation , 2016, 1603.03367.

[27]  A. Amato,et al.  Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor , 2015, Nature Communications.

[28]  A. Amato,et al.  Understanding the µ SR spectra of MnSi without magnetic polarons , 2014, 1405.0140.

[29]  F. Schappacher,et al.  Half Antiperovskites VI: On the Substitution Effects in Shandites InxSn2–xCo3S2 †‡ , 2014 .

[30]  F. Schappacher,et al.  Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the shandite-type structure , 2013 .

[31]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[32]  A. Suter,et al.  Musrfit: A Free Platform-Independent Framework for μSR Data Analysis , 2011, 1111.1569.

[33]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[34]  A. Savici,et al.  Phase separation and suppression of critical dynamics at quantum phase transitions of MnSi and (Sr 1−x Ca x )RuO 3 , 2006, cond-mat/0612437.

[35]  R. Weihrich,et al.  Half Antiperovskites. III. Crystallographic and Electronic Structure Effects in Sn2−xInxCo3S2† , 2006 .

[36]  R. Weihrich,et al.  Halbantiperowskite: Zur Struktur der Shandite M3/2AS (M = Co, Ni; A = In, Sn) und ihren Typ‐Antitypbeziehungen , 2005 .

[37]  D. Andreica,et al.  Extreme quantum behavior of positive muons in CeAl2 below 1 K , 2001 .

[38]  Sachdev,et al.  Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. , 1992, Physical review. B, Condensed matter.

[39]  Chubukov First-order transition in frustrated quantum antiferromagnets. , 1991, Physical review. B, Condensed matter.