A Reproducing Kernel Hilbert Space Approach to Functional Linear Regression

We study in this paper a smoothness regularization method for functional linear regression and provide a unified treatment for both the prediction and estimation problems. By developing a tool on simultaneous diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence and show that smoothness regularized estimators achieve the optimal rates of convergence for both prediction and estimation under conditions weaker than those for the functional principal components based methods developed in the literature. Despite the generality of the method of regularization, we show that the procedure is easily implementable. Numerical results are obtained to illustrate the merits of the method and to demonstrate the theoretical developments.

[1]  J. Sacks,et al.  Designs for Regression Problems with Correlated Errors III , 1966 .

[2]  J. Sacks,et al.  Designs for Regression Problems With Correlated Errors: Many Parameters , 1968 .

[3]  G. Wahba,et al.  Design Problems for Optimal Surface Interpolation. , 1979 .

[4]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[5]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[6]  B. Silverman,et al.  On the Estimation of a Probability Density Function by the Maximum Penalized Likelihood Method , 1982 .

[7]  G. Wahba Spline models for observational data , 1990 .

[8]  D. Cox,et al.  Asymptotic Analysis of Penalized Likelihood and Related Estimators , 1990 .

[9]  K. Ritter,et al.  MULTIVARIATE INTEGRATION AND APPROXIMATION FOR RANDOM FIELDS SATISFYING SACKS-YLVISAKER CONDITIONS , 1995 .

[10]  M. Stein Statistical Interpolation of Spatial Data: Some Theory for Kriging , 1999 .

[11]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[12]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[13]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[14]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[15]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[16]  H. Cardot,et al.  Estimation in generalized linear models for functional data via penalized likelihood , 2005 .

[17]  Ulrich Stadtmüller,et al.  Generalized functional linear models , 2005 .

[18]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[19]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[20]  Tailen Hsing,et al.  On rates of convergence in functional linear regression , 2007 .

[21]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[22]  P. Sarda,et al.  Smoothing splines estimators for functional linear regression , 2009, 0902.4344.

[23]  Jan Johannes,et al.  Nonparametric estimation in functional linear models with second order stationary regressors. , 2009, 0901.4266.

[24]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .