Biofilm inhibiting nanocomposite coatings on stainless steel surgical instruments: a possible strategy to prevent TASS

[1]  P. Garg,et al.  Biofilm inhibiting nanocomposite coatings—a promising alternative to combat surgical site infections , 2022, Journal of Coatings Technology and Research.

[2]  M. Tomczyk,et al.  The FT-IR and Raman Spectroscopies as Tools for Biofilm Characterization Created by Cariogenic Streptococci , 2020, International journal of molecular sciences.

[3]  O. Schmitz,et al.  Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry , 2020, Analytical and Bioanalytical Chemistry.

[4]  M. Lin,et al.  DLK Associated with Table-top Autoclave Biofilms: Case Series and Review. , 2020, Journal of cataract and refractive surgery.

[5]  M. Lustik,et al.  Assessment of surgical instrument bioburden after steam sterilization: A pilot study. , 2020, American Journal of Infection Control.

[6]  E. Watanabe,et al.  Complex design of surgical instruments as barrier for cleaning effectiveness, favouring biofilm formation. , 2019, The Journal of hospital infection.

[7]  R. Chuck,et al.  Toxic anterior segment syndrome-an updated review , 2018, BMC Ophthalmology.

[8]  S. Gilbert,et al.  Is retained bone debris in cannulated orthopedic instruments sterile after autoclaving? , 2018, American journal of infection control.

[9]  S. Knight,et al.  Structural basis for Acinetobacter baumannii biofilm formation , 2018, Proceedings of the National Academy of Sciences.

[10]  A. Kamnev,et al.  FTIR spectroscopic study of biofilms formed by the rhizobacterium Azospirillum brasilense Sp245 and its mutant Azospirillum brasilense Sp245.1610 , 2017 .

[11]  William H. Broach,et al.  Complete Eradication of Biofilm From Orthopedic Materials. , 2017, The Journal of arthroplasty.

[12]  S. Wickramasekara,et al.  Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry. , 2016, Analytica chimica acta.

[13]  R. Karadag,et al.  Toxic anterior segment syndrome following deep anterior lamellar keratoplasty. , 2016, Arquivos brasileiros de oftalmologia.

[14]  N. Mamalis Toxic anterior segment syndrome: Role of enzymatic detergents used in the cleaning of intraocular surgical instruments. , 2016, Journal of cataract and refractive surgery.

[15]  S. Paavilainen,et al.  Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis , 2015, PLoS pathogens.

[16]  R. Trengove,et al.  Gas Chromatography-Mass Spectrometry-Based Metabolite Profiling of Salmonella enterica Serovar Typhimurium Differentiates between Biofilm and Planktonic Phenotypes , 2015, Applied and Environmental Microbiology.

[17]  N. Mamalis,et al.  Toxic anterior segment syndrome: Update on the most common causes , 2012, Journal of cataract and refractive surgery.

[18]  K. Bremmell,et al.  Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment. , 2010, The Journal of hospital infection.

[19]  S. Banwart,et al.  Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy. , 2009, Analytical chemistry.

[20]  P. Marsh,et al.  Cleanability of dental instruments – implications of residual protein and risks from Creutzfeldt-Jakob disease , 2007, BDJ.

[21]  Daniel G Dawson,et al.  Toxic anterior segment syndrome. , 2006, Journal of cataract and refractive surgery.

[22]  K. Whitehead,et al.  Factors Affecting Microbial Adhesion to Stainless Steel and Other Materials Used in Medical Devices , 2005, The International journal of artificial organs.