Three-moment approximation for the mean queue time of a GI/G/1 queue
暂无分享,去创建一个
[1] Ciro D'Apice,et al. Queueing Theory , 2003, Operations Research.
[2] D. P. Heyman. A diffusion model approximation for the GI/G/1 queue in heavy traffic , 1975, The Bell System Technical Journal.
[3] J. F. C. Kingman,et al. The first Erlang century—and the next , 2009, Queueing Syst. Theory Appl..
[4] J. Kingman. Some inequalities for the queue GI/G/1 , 1962 .
[5] D. V. Lindley,et al. The theory of queues with a single server , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] I. Adan,et al. QUEUEING THEORY , 1978 .
[7] Jordan Stoyanov,et al. Fundamentals of Queueing Networks: Performance, Asymptotics and Optimization , 2003 .
[8] An Improved Heuristic Approximation for the G 1 / G 1 / 1 Queue with Bursty Arrivals * , 2011 .
[9] Hisashi Kobayashi,et al. Application of the Diffusion Approximation to Queueing Networks I: Equilibrium Queue Distributions , 1974, JACM.
[10] J. A. Buzacott,et al. On the approximations to the single server queue , 1980 .
[11] Philip S. Yu. On accuracy improvement and applicability conditions of diffusion approximation with applications to modelling of computer systems , 1977 .
[12] Arne H. Myskja. On Approximations for the GI / GI / 1 Queue , 1990, Comput. Networks ISDN Syst..
[13] John Frank Charles Kingman,et al. The single server queue in heavy traffic , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.
[14] David D. Yao,et al. Fundamentals of Queueing Networks , 2001 .
[15] A. K. Erlang. The theory of probabilities and telephone conversations , 1909 .
[16] William G. Marchal,et al. An Approximate Formula for Waiting Time in Single Server Queues , 1976 .
[17] Wolfgang Kraemer,et al. Approximate Formulae for the Delay in the Queueing System GI/G/ 1 , 1976 .
[18] Erol Gelenbe,et al. On Approximate Computer System Models , 1975, JACM.
[19] Leon F. McGinnis,et al. Interpolation approximations for queues in series , 2013 .
[20] M. Donsker. Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems , 1952 .
[21] Marcel F. Neuts,et al. Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .
[22] Felix Pollaczek,et al. Über eine Aufgabe der Wahrscheinlichkeitstheorie. I , 1930 .