Three-moment approximation for the mean queue time of a GI/G/1 queue

ABSTRACT The approximation of a GI/G/1 queue plays a key role in the performance evaluation of queueing systems. To improve the conventional two-moment approximations, we propose a three-moment approximation for the mean queue time of a GI/G/1 queue based on the exact results of the H2/M/1 queue. The model is validated over a wide range of numerical experiments. Based on paired t-tests, our three-moment approximation outperforms the two-moment ones when the inter-arrival time variability is greater than one.

[1]  Ciro D'Apice,et al.  Queueing Theory , 2003, Operations Research.

[2]  D. P. Heyman A diffusion model approximation for the GI/G/1 queue in heavy traffic , 1975, The Bell System Technical Journal.

[3]  J. F. C. Kingman,et al.  The first Erlang century—and the next , 2009, Queueing Syst. Theory Appl..

[4]  J. Kingman Some inequalities for the queue GI/G/1 , 1962 .

[5]  D. V. Lindley,et al.  The theory of queues with a single server , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  I. Adan,et al.  QUEUEING THEORY , 1978 .

[7]  Jordan Stoyanov,et al.  Fundamentals of Queueing Networks: Performance, Asymptotics and Optimization , 2003 .

[8]  An Improved Heuristic Approximation for the G 1 / G 1 / 1 Queue with Bursty Arrivals * , 2011 .

[9]  Hisashi Kobayashi,et al.  Application of the Diffusion Approximation to Queueing Networks I: Equilibrium Queue Distributions , 1974, JACM.

[10]  J. A. Buzacott,et al.  On the approximations to the single server queue , 1980 .

[11]  Philip S. Yu On accuracy improvement and applicability conditions of diffusion approximation with applications to modelling of computer systems , 1977 .

[12]  Arne H. Myskja On Approximations for the GI / GI / 1 Queue , 1990, Comput. Networks ISDN Syst..

[13]  John Frank Charles Kingman,et al.  The single server queue in heavy traffic , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  David D. Yao,et al.  Fundamentals of Queueing Networks , 2001 .

[15]  A. K. Erlang The theory of probabilities and telephone conversations , 1909 .

[16]  William G. Marchal,et al.  An Approximate Formula for Waiting Time in Single Server Queues , 1976 .

[17]  Wolfgang Kraemer,et al.  Approximate Formulae for the Delay in the Queueing System GI/G/ 1 , 1976 .

[18]  Erol Gelenbe,et al.  On Approximate Computer System Models , 1975, JACM.

[19]  Leon F. McGinnis,et al.  Interpolation approximations for queues in series , 2013 .

[20]  M. Donsker Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems , 1952 .

[21]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[22]  Felix Pollaczek,et al.  Über eine Aufgabe der Wahrscheinlichkeitstheorie. I , 1930 .