On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases
暂无分享,去创建一个
[1] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[2] Lei Huang,et al. A new conception for computing gröbner basis and its applications , 2010, ArXiv.
[3] Gwénolé Ars. Applications des bases de Gröbner à la cryptograhie , 2005 .
[4] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[5] Amir Hashemi,et al. Extended F5 criteria , 2010, J. Symb. Comput..
[6] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[7] Jee Koh,et al. On efficient computation of grobner bases , 2008 .
[8] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[9] Vladimir P. Gerdt,et al. Involutive Algorithms for Computing Groebner Bases , 2005 .
[10] Amir Hashemi,et al. Applying IsRewritten criterion on Buchberger algorithm , 2011, Theor. Comput. Sci..
[11] Shuhong Gao,et al. A New Algorithm for Computing Grobner Bases , 2010 .
[12] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[13] Christian Eder,et al. F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases , 2009, J. Symb. Comput..
[14] Christian Eder,et al. Signature-based algorithms to compute Gröbner bases , 2011, ISSAC '11.
[15] Svetlana Cojocaru,et al. Computational Commutative and Non-Commutative Algebraic Geometry , 2005 .
[16] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[17] Teo Mora,et al. Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology , 2005 .
[18] Shuhong Gao,et al. A new incremental algorithm for computing Groebner bases , 2010, ISSAC.
[19] Rüdiger Gebauer,et al. On an Installation of Buchberger's Algorithm , 1988, J. Symb. Comput..
[20] B. Buchberger,et al. Gröbner bases and applications , 1998 .